scholarly journals CXCR4/Let-7a Axis Regulates Metastasis and Chemoresistance of Pancreatic Cancer Cells Through Targeting HMGA2

2017 ◽  
Vol 43 (2) ◽  
pp. 840-851 ◽  
Author(s):  
Guangfa Xiao ◽  
Xitao Wang ◽  
Yaqun Yu

Background/Aims: Pancreatic cancer cells (PCC) is one of the most risky cancers and gemcitabine (GEM) is the standard first-line drug for treating PCC. The PCC will develop drug resistance to GEM after a period of treatment. However, the detailed molecular mechanism of pathogenesis and drug resistance remains unresolved. Methods: we employed qRT-PCR and western blot to examine the expression level of CXCR4, let-7a and HMGA2. In addition, we used MTT assay to detect cell proliferation and transwell assay to measure migration and invasiveness. The expression level of epithelial marker E-cadherin and mesenthymal marker N-cadherin was detected by western blot. The apoptosis was determined using annexin V-FITC/PI apoptosis detection kit by flow cytometry. Results: we first proved that CXCR4 negatively regulated let-7a in PCC. Next, let-7a was confirmed to play crucial role in tumorigenesis, metastasis and drug resistance of pancreatic cancer cells Bxpc-3 and Panc-1 in vitro and in vivo. Finally, we identified HMGA2 as important downsteam target of let-7a in PCC and overexpression of HMGA2 restores cell proliferation, metastasis and chemosensitivity of GEM inhibited by let-7a. Conlusion: Taken together, we show an important signaling pathway involved in pathogenesis and drug resistance of PCC, thereby providing deeper insight into molecular mechanism by which CXCR4/let-7a regulates tumorigenesis and drug resistance of PCC. These findings will help us develop new strategies for diagnosis and treatment of PCC.

2021 ◽  
Vol 11 ◽  
Author(s):  
Dongfeng Cheng ◽  
Juanjuan Fan ◽  
Kai Qin ◽  
Yiran Zhou ◽  
Jingrui Yang ◽  
...  

Pancreatic cancer (PC) is one of the deadliest gastrointestinal cancers, accounting for the fourth highest number of cancer-related fatalities. Increasing data suggests that mesenchymal stem cells (MSCs) might influence the drug resistance of GC cells in the tumor microenvironment and play essential roles in drug resistance development. However, the precise underlying process remains a mystery. The purpose of this study was to look at the control of MSC-induced SNHG7 in pancreatic cancer. In vitro and in vivo sphere formation, colony formation, and flow cytometry investigations revealed the stemness and Folfirinox resistance in pancreatic cancer cells. To confirm the direct connections between SNHG7 and other related targets, RNA pulldown and immunoprecipitation tests were performed. MSC co-culture enhanced the stemness and Folfirinox resistance in pancreatic cancer cells according to the findings. MSC co-culture increased SNHG7 expression in pancreatic cancer cells, contributing to the stemness and Folfirinox resistance. We demonstrated that Notch1 interacted with SNHG7 and could reverse the facilitative effect of SNHG7 on the stemness and Folfirinox resistance in pancreatic cancer cells. Finally, our findings showed that MSCs increased SNHG7 expression in pancreatic cancer cells, promoting the stemness and Folfirinox resistance via the Notch1/Jagged1/Hes-1 signaling pathway. These findings could provide a novel approach and therapeutic target for pancreatic cancer patients.


2012 ◽  
Vol 98 (6) ◽  
pp. 804-811 ◽  
Author(s):  
Zhiping Zhang ◽  
Zhou Wang ◽  
Xiangyan Liu ◽  
Jie Wang ◽  
Feng Li ◽  
...  

Aims and background To study the inhibitory effect of p21WAF1/CIP1 activation by saRNA on the growth of human pancreatic cancer cells PANC-1 in vitro and in vivo. Methods and study design A dsRNA (dsP21) targeting the p21WAF1/CIP1 gene promoter at position-322 relative to the transcription start site was transfected into PANC-1 cells. Expression of mRNA and protein was evaluated by semiquantitative RT-PCR and Western blotting. Proliferation of PANC-1 cells was measured by the MTT method, and the apoptosis rate was detected by flow cytometry. PANC-1 cells were transplanted subcutaneously in nude mice, and the inhibitory effect of dsP21 on tumor growth was observed. Results The introduction of dsP21 was shown to efficiently up-regulate expression of the p21WAF1/CIP1 gene in PANC-1 cells according to the results of RT-PCR and Western blotting (P <0.01, compared with controls). The inhibitory effect on cell proliferation was confirmed by the MTT test (P <0.05, compared with controls). The apoptosis rate of PANC-1 cells treated with dsP21 was significantly higher than that of the control cells (P <0.01). Our experimental data showed that dsP21-mediated up-regulation of p21 expression exerted an apparent growth inhibitory effect on PANC-1 cells in vivo. Conclusions dsP21 targeting the p21WAF1/CIP1 gene promoter can specifically up-regulate expression of the p21WAF1/CIP1 gene in PANC-1 cells. It therefore has a substantially inhibitory effect on cell proliferation in vitro and in vivo and can be used as a new method and material for the gene therapy of pancreatic cancer.


2010 ◽  
Vol 999 (999) ◽  
pp. 1-11
Author(s):  
P. Ulivi ◽  
C. Arienti ◽  
W. Zoli ◽  
M. Scarsella ◽  
S. Carloni ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2017
Author(s):  
Lital Sharvit ◽  
Rinat Bar-Shalom ◽  
Naiel Azzam ◽  
Yaniv Yechiel ◽  
Solomon Wasser ◽  
...  

Pancreatic cancer is a highly lethal disease with limited options for effective therapy and the lowest survival rate of all cancer forms. Therefore, a new, effective strategy for cancer treatment is in need. Previously, we found that a culture liquid extract of Cyathus striatus (CS) has a potent antitumor activity. In the present study, we aimed to investigate the effects of Cyathus striatus extract (CSE) on the growth of pancreatic cancer cells, both in vitro and in vivo. The proliferation assay (XTT), cell cycle analysis, Annexin/PI staining and TUNEL assay confirmed the inhibition of cell growth and induction of apoptosis by CSE. A Western blot analysis demonstrated the involvement of both the extrinsic and intrinsic apoptosis pathways. In addition, a RNAseq analysis revealed the involvement of the MAPK and P53 signaling pathways and pointed toward endoplasmic reticulum stress induced apoptosis. The anticancer activity of the CSE was also demonstrated in mice harboring pancreatic cancer cell line-derived tumor xenografts when CSE was given for 5 weeks by weekly IV injections. Our findings suggest that CSE could potentially be useful as a new strategy for treating pancreatic cancer.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Feng Guo ◽  
Yingke Zhou ◽  
Hui Guo ◽  
Dianyun Ren ◽  
Xin Jin ◽  
...  

AbstractNR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Kim Rouven Liedtke ◽  
Sander Bekeschus ◽  
André Kaeding ◽  
Christine Hackbarth ◽  
Jens-Peter Kuehn ◽  
...  

2000 ◽  
Vol 118 (4) ◽  
pp. A540
Author(s):  
Thomas Seufferlein ◽  
Michael J. Seckl ◽  
Michael Beil ◽  
Hardi Luhrs ◽  
Roland M. Schmid ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Fei Xu ◽  
Heshui Wu ◽  
Jiongxin Xiong ◽  
Tao Peng

Gemcitabine (GEM) resistance remains a challenging clinical issue to overcome in chemotherapy against pancreatic cancer. We previously demonstrated that miR-210 derived from pancreatic cancer stem cells enhanced the GEM-resistant properties of pancreatic cancer cells, thus identifying miR-210 as an oncogenic miRNA. Herein, we report the existence of an upstream effector that acts as a competing endogenous RNA (ceRNA) to miR-210. Bioinformatic screening was performed to identify lncRNAs with a binding relationship to miR-210. Overexpression and interference vectors were constructed to demonstrate the effect of ceRNA activity in pancreatic cell behavior, both in vitro and in vivo. DLEU2L (deleted in lymphocytic leukemia 2-like), which is expressed at low levels in pancreatic cancer tissues, was shown to exhibit a binding relationship with miR-210-3p. Overexpression of DLEU2L and silencing of miR-210-3p suppressed the proliferation, migration, and invasion of pancreatic cancer cells while promoting apoptosis. These effects occurred via the inhibition of the Warburg effect (aerobic glycolysis) and AKT/mTOR signaling. In addition, we showed that BRCA2 is a target gene of miR-210-3p, and the downregulation of miR-210-3p by DLEU2L effectively induced an upregulation of BRCA2 via the ceRNA mechanism. In vivo, DLEU2L overexpression and miR-210-3p interference suppressed pancreatic tumor progression, consistent with the results of in vitro studies. The findings of our study establish DLEU2L as a ceRNA to miR-210-3p and reveal the critical role of the DLEU2L/miR-210-3p crosstalk in targeting GEM resistance.


Pancreas ◽  
2008 ◽  
Vol 37 (4) ◽  
pp. 480
Author(s):  
A. Li ◽  
S. Hasan ◽  
E. Angst ◽  
J. Park ◽  
H. A. Reber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document