scholarly journals Niclosamide Exhibits Potent Anticancer Activity and Synergizes with Sorafenib in Human Renal Cell Cancer Cells

2018 ◽  
Vol 47 (3) ◽  
pp. 957-971 ◽  
Author(s):  
Xinyi Yu ◽  
Feng Liu ◽  
Liyi Zeng ◽  
Fang He ◽  
Ruyi Zhang ◽  
...  

Background/Aims: As the most lethal urological cancers, renal cell carcinoma (RCC) comprises a heterogeneous group of cancer with diverse genetic and molecular alterations. There is an unmet clinical need to develop efficacious therapeutics for advanced, metastatic and/or relapsed RCC. Here, we investigate whether anthelmintic drug Niclosamide exhibits anticancer activity and synergizes with targeted therapy Sorafenib in suppressing RCC cell proliferation. Methods: Cell proliferation and migration were assessed by Crystal violet staining, WST-1 assay, cell wounding and cell cycle analysis. Gene expression was assessed by qPCR. In vivo anticancer activity was assessed in xenograft tumor model. Results: We find that Niclosamide effectively inhibits cell proliferation, cell migration and cell cycle progression, and induces apoptosis in human renal cancer cells. Mechanistically, Niclosamide inhibits the expression of C-MYC and E2F1 while inducing the expression of PTEN in RCC cells. Niclosamide is further shown to synergize with Sorafenib in suppressing RCC cell proliferation and survival. In the xenograft tumor model, Niclosamide is shown to effectively inhibit tumor growth and suppress RCC cell proliferation. Conclusions: Niclosamide may be repurposed as a potent anticancer agent, which can potentiate the anticancer activity of the other agents targeting different signaling pathways in the treatment of human RCC.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract Background CSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet. Methods Data from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 and clinical relevance in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR–CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. The biological behaviors were analyzed by CCK8, clone formation assay, 3-D spheroid generation assay and cell cycle assay. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. MLN4924 was given in Siha and Hela with CSN5 overexpression. Results We found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells. Conclusions Our findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 354 ◽  
Author(s):  
Mouna Sdiri ◽  
Xiangmin Li ◽  
William Du ◽  
Safia El-Bok ◽  
Yi-Zhen Xie ◽  
...  

The extensive applications of Cynomorium species and their rich bioactive secondary metabolites have inspired many pharmacological investigations. Previous research has been conducted to examine the biological activities and numerous interesting pharmaceutical activities have been reported. However, the antitumor activities of these species are unclear. To understand the potential anticancer activity, we screened Cynomorium coccineum and Cynomorium songaricum using three different extracts of each species. In this study, the selected extracts were evaluated for their ability to decrease survival rates of five different cancer cell lines. We compared the cytotoxicity of the three different extracts to the anticancer drug vinblastine and one of the most well-known medicinal mushrooms Amaurederma rude. We found that the water and alcohol extracts of C. coccineum at the very low concentrations possessed very high capacity in decreasing the cancer cells viability with a potential inhibition of tumorigenesis. Based on these primitive data, we subsequently tested the ethanol and the water extracts of C. coccineum, respectively in in vitro and in vivo assays. Cell cycle progression and induction of programmed cell death were investigated at both biological and molecular levels to understand the mechanism of the antitumor inhibitory action of the C. coccineum. The in vitro experiments showed that the treated cancer cells formed fewer and smaller colonies than the untreated cells. Cell cycle progression was inhibited, and the ethanol extract of C. coccineum at a low concentration induced accumulation of cells in the G1 phase. We also found that the C. coccineum’s extracts suppressed viability of two murine cancer cell lines. In the in vivo experiments, we injected mice with murine cancer cell line B16, followed by peritoneal injection of the water extract. The treatment prolonged mouse survival significantly. The tumors grew at a slower rate than the control. Down-regulation of c-myc expression appeared to be associated with these effects. Further investigation showed that treatment with C. coccineum induced the overexpression of the tumor suppressor Foxo3 and other molecules involved in inducing autophagy. These results showed that the C. coccineum extract exerts its antiproliferative activity through the induction of cell death pathway. Thus, the Cynomorium plants appear to be a promising source of new antineoplastic compounds.


2020 ◽  
Vol 245 (11) ◽  
pp. 925-932 ◽  
Author(s):  
Fang Chen ◽  
Xiaohui Wang ◽  
Shuang Fu ◽  
Shaokun Wang ◽  
Yu Fu ◽  
...  

The covalently closed circular RNA has recently been proposed as a pivotal player in tumorigenesis. In the current study, we found that circ-CDYL was notably elevated in multiple myeloma tissue and plasma samples and had good diagnostic and prognostic efficacy. Functional assays showed that circ-CDYL enhanced the viability and DNA synthesis of multiple myeloma cells and inhibited apoptosis. Mechanically, cytoplasmic circ-CDYL was co-localized with miR-1180, and circ-CDYL absorbed miR-1180 to upregulate yes-associated protein (YAP), thereby facilitating multiple myeloma progression. Importantly, we further confirmed the existence of this circ-CDYL/miR-1180/YAP regulatory axis in vivo by using the xenograft tumor model. Taken together, our data demonstrate that circ-CDYL is novel promoter of multiple myeloma, and targeting circ-CDYL and its associated network implicates the therapeutic possibility for multiple myeloma patients. Impact statement Multiple myeloma (MM) is an extremely complex and heterogeneous disease, and its pathogenesis is poorly understood. Here, we described an important MM-related circular RNA (circRNA), circ-CDYL. It was remarkably increased in both MM cells and plasma. Depletion of circ-CDYL evidently stunted MM growth. Circ-CDYL could absorb miR-1180 and alleviated the repression of miR-1180 on YAP, leading to increased YAP expression, ultimately triggering MM uncontrolled growth. Therefore, our findings advance the understanding of MM pathogenesis, and also raise the possibility of considering circ-CDYL as a potential therapeutic intervention for MM.


2015 ◽  
Vol 211 (1) ◽  
pp. 105-122 ◽  
Author(s):  
Zhipeng Zou ◽  
Juan Chen ◽  
Anling Liu ◽  
Xuan Zhou ◽  
Qiancheng Song ◽  
...  

Previous studies have reported that mTORC2 promotes cell survival through phosphorylating AKT and enhancing its activity. We reveal another mechanism by which mTORC2 controls apoptosis. Inactivation of mTORC2 promotes binding of CIP2A to PP2A, leading to reduced PP2A activity toward c-Myc serine 62 and, consequently, enhancement of c-Myc phosphorylation and expression. Increased c-Myc activity induces transcription of pri-miR-9-2/miR-9-3p, in turn inhibiting expression of E2F1, a transcriptional factor critical for cancer cell survival and tumor progression, resulting in enhanced apoptosis. In vivo experiments using B cell–specific mTORC2 (rapamycin-insensitive companion of mTOR) deletion mice and a xenograft tumor model confirmed that inactivation of mTORC2 causes up-regulation of c-Myc and miR-9-3p, down-regulation of E2F1, and consequent reduction in cell survival. Conversely, Antagomir-9-3p reversed mTORC1/2 inhibitor–potentiated E2F1 suppression and resultant apoptosis in xenograft tumors. Our in vitro and in vivo findings collectively demonstrate that mTORC2 promotes cell survival by stimulating E2F1 expression through a c-Myc– and miR-9-3p–dependent mechanism.


2014 ◽  
Vol 24 (4) ◽  
pp. 635-642 ◽  
Author(s):  
Jiaming Huang ◽  
Peiqi Ke ◽  
Luyan Guo ◽  
Wei Wang ◽  
Hao Tan ◽  
...  

ObjectiveThe overexpression of long noncoding RNA HOTAIR is associated with various aggressive solid carcinomas. However, its relationship with endometrial carcinoma has not been reported. The present study aimed to investigate the expression of the long noncoding RNA HOTAIR in endometrial carcinoma, its relationship with the carcinoma’s clinicopathologic features, and the biological function of HOTAIR in regulating endometrial cancer cell proliferation and invasion in vitro and in vivo.MethodsThe expression of HOTAIR was detected in different tissues and cell lines by real-time PCR. Lentivirus-mediated HOTAIR-specific shRNAvectors were transfected into endometrial cancer HEC-1A cells. Cell proliferation and colony formation were examined by CCK-8 assays and colony formation assays, respectively. Invasion and migration were examined by Transwell assays. Flow cytometry assay was used to examine the cell cycle. In addition, xenograft model assays were performed to analyze the growth of endometrial cancer cells in vivo.ResultsOur data showed that HOTAIR expression was higher in endometrial cancer cells and tissues than in normal endometrial tissues. HOTAIR expression was closely related to the tumor stage (P= 0.045), myometrial invasion (P= 0.014), and lymph node metastasis (P= 0.033). The down-regulation of HOTAIR resulted in a significant inhibition of cell proliferation, migration, and invasion and in cell cycle arrest at the G0/G1 phase. Furthermore, HOTAIR depletion significantly suppressed the endometrial cancer tumorigenesis in vivo.ConclusionsThis study is the first to suggest that HOTAIR plays an important role in the carcinogenesis of endometrial cancer. Targeting HOTAIR may be a novel therapeutic strategy for endometrial cancer.


2020 ◽  
Author(s):  
Wenbao Lu ◽  
Meicen Zhou ◽  
Bing Wang ◽  
Xueting Liu ◽  
Bingwei Li

Abstract Background: Dysregulation of cell cycle progression is a common feature of human cancer cells; however, its mechanism remains unclear. This study aims to clarify the role and the underlying mechanisms of Roquin1 in cell cycle arrest in breast cancer.Methods: Public cancer databases were analyzed to identify the expression pattern of Roquin1 in human breast cancers and its association with patient survival. Quantitative real-time PCR and Western blots were performed to detect the expression of Roquin1 in breast cancer samples and cell lines. Cell counting, MTT assays, flow cytometry, and in vivo analyses were conducted to investigate the effects of Roquin1 on cell proliferation, cell cycle progression and tumor progression. RNA sequencing was applied to identify the differentially expressed genes regulated by Roquin1. RNA immunoprecipitation assay, luciferase reporter assay, mRNA half-life detection, RNA affinity binding assay, and RIP-ChIP were used to explore the molecular mechanisms of Roquin1.Results: We showed that Roquin1 expression in breast cancer tissues and cell lines was inhibited, and the reduction in Roquin1 expression was associated with poor overall survival and relapse-free survival of patients with breast cancer. Roquin1 overexpression inhibited cell proliferation and induced G1/S cell cycle arrest without causing significant apoptosis. In contrast, knockdown of Roquin1 promoted cell growth and cycle progression. Moreover, in vivo induction of Roquin1 by adenovirus significantly suppressed breast tumor growth and metastasis. Mechanistically, Roquin1 selectively destabilizes cell cycle–promoting genes, including Cyclin D1, Cyclin E1, cyclin dependent kinase 6 (CDK6) and minichromosome maintenance 2 (MCM2), by targeting the stem–loop structure in the 3' untranslated region (3'UTR) of mRNAs via its ROQ domain, leading to the downregulation of cell cycle–promoting mRNAs.Conclusions: Our findings demonstrated that Roquin1 is a novel breast tumor suppressor and could induce G1/S cell cycle arrest by selectively downregulating the expression of cell cycle–promoting genes, which might be a potential molecular target for breast cancer treatment.


2020 ◽  
Author(s):  
Wenbao Lu ◽  
Meicen Zhou ◽  
Bing Wang ◽  
Xueting Liu ◽  
Bingwei Li

Abstract Background: Dysregulation of cell cycle progression is one of the common features of human cancer cells, however, its mechanism remains unclear. This study aims to clarify the role and the underlying mechanisms of Roquin1 in cell cycle arrest induction in breast cancer. Methods: Public cancer databases were analyzed to identify the expression pattern of Roquin1 in human breast cancers and the significant association with patient survival. Quantitative real-time PCR and western blots were performed to detect the expression of Roquin1 in breast cancer samples and cell lines. Cell counting, MTT assay, flow cytometry, and in vivo study were conducted to investigate the effects of Roquin1 on cell proliferation, cell cycle progression and tumor progression. RNA-sequencing was applied to identify the differential genes and pathways regulated by Roquin1. RNA immunoprecipitation assay, luciferase reporter assay, mRNA half-life detection, RNA affinity binding assay, and RIP-ChIP were used to explore the molecular mechanisms of Roquin1. Results: We showed that Roquin1 expression in breast cancer tissues and cell lines was inhibited, and the reduction in Roquin1 expression was associated with poor overall survival and relapse free survival of patients with breast cancer. Roquin1 overexpression inhibited breast cancer cell proliferation and induced G1/S cell cycle arrest without causing significant apoptosis. In contrast, knockdown of Roquin1 promoted breast cancer cell growth and cycle progression. Moreover, in vivo induction of Roquin1 by adenovirus significantly suppressed breast tumor growth and metastasis. Mechanistically, Roquin1 selectively destabilizing cell cycle–promoting genes, including Cyclin D1, Cyclin E1, cyclin dependent kinase 6 (CDK6) and minichromosome maintenance 2 (MCM2) through targeting the stem–loop structure in the 3’untranslated region (3’UTR) of mRNAs via its ROQ domain, leading to the downregulation of cell cycle–promoting mRNAs. Conclusions: Our findings demonstrated that Roquin1 was a novel breast tumor suppressor and could induce G1/S cell cycle arrest by selectively downregulating the expression of cell cycle–promoting genes, which might as a potential molecular target for breast cancer treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jia Han ◽  
Wei Hou ◽  
Bi-qing Cai ◽  
Fan Zhang ◽  
Jian-cai Tang

This study aimed to investigate the inhibitory effect of 12-epi-napelline on leukemia cells and its possible mechanisms. The inhibitory effects of 12-epi-napelline on K-562 and HL-60 cells were evaluated using the CCK-8 assay, cell cycle arrest and apoptosis were detected by flow cytometry, and the expression of related proteins was measured by western blot. A K-562 tumor model was established to evaluate the antitumor effect of 12-epi-napelline in vivo. A reduction in leukemia cell viability was observed after treatment with 12-epi-napelline. It was determined that the cell cycle was arrested in the G0/G1 phase, and the cell apoptosis rate was increased. Moreover, caspase-3 and Bcl-2 were downregulated, whereas cleaved caspase-3 and caspase-9 were upregulated. Further study revealed that 12-epi-napelline could suppress the expression of PI3K, AKT, p-AKT, and mTOR. Insulin-like growth factor 1 (IGF-1) attenuated 12-epi-napelline-induced apoptosis and ameliorated the repression of PI3K, AKT, p-AKT, and mTOR by 12-epi-napelline. Animal experiments clearly showed that 12-epi-napelline inhibited tumor growth. In conclusion, 12-epi-napelline restrained leukemia cell proliferation by suppressing the PI3K/AKT/mTOR pathway in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document