scholarly journals Sensitization of Gastric Cancer Cells to 5-FU by MicroRNA-204 Through Targeting the TGFBR2-Mediated Epithelial to Mesenchymal Transition

2018 ◽  
Vol 47 (4) ◽  
pp. 1533-1545 ◽  
Author(s):  
Liang-Qing Li ◽  
Dun Pan ◽  
Qun Chen ◽  
Sheng-Wei Zhang ◽  
Di-Ya Xie ◽  
...  

Background/Aims: Gastric cancer (GC) is the most common gastrointestinal malignancy, causing cancer-related deaths in East Asia. MicroRNAs (miRNAs) are small non-coding RNAs aberrantly expressed in human tumors. In this study, we aim to investigate the roles of miR-204 in the epithelial to mesenchymal transition (EMT)-associated chemosensitivity. Methods: The expression of miR-204 was detected in clinical tumor samples and GC cell lines by real time PCR. Tumor cell’s growth, invasion, and migration were measured by MTT assay, wound healing assay, and transwell invasion assay, respectively. Western blot method was used to detect the protein levels of indicated genes. Luciferase reporter assay was performed to validate the target gene of miR-204. The in vivo role of miR-204 was measured using a xenograft mouse model of GC. Results: By comparing the expressions of miR-204 in human gastric tumors and their adjacent normal tissues, it was disclosed that miR-204 was significantly downregulated in gastric tumors. Moreover, miR-204 was downregulated in multiple GC cell lines compared with normal gastric epithelial cells. Overexpression of miR-204 suppressed GC cells’ proliferation, invasion, and migration. It is noteworthy that 5-FU treatments induced miR-204 expression and suppressed TGF-β pathway. By establishment of 5-FU resistant GC cell line, it was revealed that miR-204 was significantly downregulated in 5-FU resistant GC cells, representing mesenchymal features with downregulation of epithelial marker, while mesenchymal markers were upregulated. We identified TGFBR2 as a direct target of miR-204 by Western blot method and luciferase assay in GC cells and tumor samples as well. In addition, overexpression of miR-204 sensitized GC cells to 5-FU in vitro. Xenograft experiments demonstrated that the combination of miR-204 and 5-FU efficiently inhibited tumor growth and improved survival rate of mice as well. Eventually, we illustrated the restoration of TGFBR2 in miR-204 overexpression GC cells, which recovered resistance to 5-FU treatments compared with miR-204 overexpression GC cells. Conclusion: This study describes a miRNA-based therapeutic strategy against 5-FU resistance in GC, contributing to the development of anti-chemoresistance therapeutic agents.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhidong Zhao ◽  
Xianju Qin

Abstract Colon adenocarcinoma (COAD) is the most common type of gastrointestinal cancer and is still the third leading cause of cancer-related mortality worldwide. Therefore, finding new and promising drugs to eradicate cancer may be a feasible method to treat COAD patients. Cys2-His2 zinc finger proteins (ZFPs) is one of the largest transcription factor family and many of them are highly involved in regulation of cell differentiation, proliferation, apoptosis, and neoplastic transformation. In this study, we identified a tumor-inhibiting factor, ZNF549, which expressed lowly in COAD tissues and COAD cell lines (HT29, HCT116, SW480, LoVo, and SW620). Overexpression of ZNF549 inhibit the ability of COAD cell proliferation and migration. On the contrary, decreasing the ZNF549 expression level promote the ability of COAD cell proliferation and migration. Through bioinformatics analysis, we found that ZNF549 was a potential target of hsa-miR-708-5p (miR-708-5p). Furthermore, we verified the possibility of miR-708-5p targeting the ZNF549 gene, and miR-708-5p inhibited the expression of ZNF549 by luciferase reporter assays, qRT-PCR and western blot assays. Moreover, the relationship between miR-708-5p and phosphatidylinositol 3-kinase/AKt (PI3K/AKt) signal pathway was elucidated. Overexpression and inhibition of miR-708-5p resulted in increased and decreased expression of p-AKt and p-PI3K in HCT116 cells, respectively. RT-qPCR and western blot assays results demonstrated that miR-708-5p regulated COAD cells development by promoting the process of Epithelial-mesenchymal transition (EMT) through PI3K/AKt signaling pathway. In summary, our findings demonstrated that ZNF549, the target gene of miR-708-5p, functions as a tumor suppressor to inhibit COAD cell lines proliferation and migration through regulate the PI3K/AKt signal pathway.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Limin Ma ◽  
Changming Tao ◽  
Yingying Zhang

Objective. Hepatocellular carcinoma (HCC) is a kind of solid and highly aggressive malignant tumor with poor prognosis. MicroRNA (miRNA/miR) has been confirmed to be involved in HCC development. The current study focused on the functions and mechanisms of miR-517c in HCC. Methods. Expressions of miR-517c and Karyopherin α2 (KPNA2) mRNA in HCC cell lines and tissue samples were examined using quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was conducted for detections of epithelial-to-mesenchymal transition (EMT) and PI3K/AKT markers. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and Transwell assays were utilized to investigate the influence of miR-517c on HCC cell proliferation, invasion, and migration. TargetScan and luciferase reporter assay were performed to search for the potential target gene of miR-517c. Results. We demonstrated that miR-517c expressions were decreased in HCC tissues and cells. Moreover, the clinical analysis showed that decreased miR-517c expressions in HCC tissues correlated with shorter overall survival and malignant clinicopathologic features of HCC patients. MTT assay showed that miR-517c upregulation prominently repressed HCC cell proliferation. In addition, miR-517c restoration could significantly suppress HCC cell invasion and migration as demonstrated by Transwell assays. We also found that miR-517c directly targeted KPNA2 and regulated the PI3K/AKT pathway and EMT, exerting prohibitory functions in HCC. Conclusion. Taken together, this study stated that miR-517c inhibited HCC progression via regulating the PI3K/AKT pathway and EMT and targeting KPNA2 in HCC, providing a novel insight into HCC treatment.


2015 ◽  
Vol 36 (3) ◽  
pp. 1175-1185 ◽  
Author(s):  
Ming Cai ◽  
Zhiqiang Wang ◽  
Jiru Zhang ◽  
Huan Zhou ◽  
Linfang Jin ◽  
...  

Background/Aims: A disintegrin and metalloprotease (ADAM) 17 has been reported to be implicated in cancer cells invasion. Nevertheless, its potential role in lung adenocarcinoma has not been addressed clearly. Methods: RT-PCR and Western blot were used to detect the expression of miR-326 and ADAM17 in lung adenocarcinoma samples (n=73). miR-326 mimics and inhibitor were tansfected in human A549 and SPCA1 cell lines. The transwell assay was used to detect the cell invasive ability. The regulation mechanism was evaluated by luciferase reporter assay. The markers of (epithelial-to-mesenchymal transition) EMT were detected by using Western blot assay. Results: We found increased expression of ADAM17 in lung adenocarcinoma and cell lines. In vitro, up-regulation of ADAM17 promoted cells invasion, while silencing of ADAM17 inhibited cells invasion. Meanwhile, ADAM17 could affect the markers of EMT. Furthermore, we confirmed that ADAM17 is a target of miR-326, which is involved in EMT and cells invasion. Conclusions: These findings revealed that ADAM17, a target of miR-326, promoted EMT-induced cells invasion in lung adenocarcinoma.


2018 ◽  
Vol 47 (6) ◽  
pp. 2432-2444 ◽  
Author(s):  
Zehong Chen ◽  
Jialin Wu ◽  
Wensheng Huang ◽  
Jianjun Peng ◽  
Jinning Ye ◽  
...  

Background/Aims: Gastric cancer (GC) is a common malignancy with a global incidence that ranks fourth among all tumor types. Epithelial-to-mesenchymal transition (EMT) is a tumor biological process with a role in GC cell metastasis. Long non-coding RNAs (lncRNAs) and microRNAs possess important regulatory functions at the cellular level and in diverse pathophysiological processes. This study was conducted to investigate whether lncRNA RP11-789C1.1 regulates EMT in GC by mediating the miR-5003/E-cadherin pathway. Methods: RP11-789C1.1 and miR-5003 expression was detected in GC specimens and cell lines by quantitative real-time PCR. Western blotting and immunohistochemistry were performed to detect EMT markers in GC. Cell Counting Kit 8 assays were carried out to explore cell proliferation. Wound healing and Transwell assays were conducted to determine the migration and invasion of GC cells. To clarify the correlation between RP11-789C1.1, miR-5003, and E-cadherin, dual-luciferase reporter assays were applied. Results: LncRNA RP11-789C1.1 was significantly down-regulated in GC patients and cell lines, along with the concomitant up-regulation of miR-5003. Silencing RP11-789C1.1 and over-expressing miR-5003 significantly promoted the tumor behavior of GC cells. Dual-luciferase reporter assays confirmed that miR-5003 was the target of both RP11-789C1.1 and E-cadherin. Furthermore, at both the mRNA and protein level, silencing RP11-789C1.1 remarkably reduced the expression of E-cadherin and promoted EMT, which were reversed by knocking down miR-5003. Conclusions: LncRNA RP11-789C1.1 inhibited EMT in GC through the RP11-789C1.1/miR-5003/E-cadherin axis, which could be a promising therapeutic target for GC.


2017 ◽  
Vol 37 (3) ◽  
Author(s):  
Yuling Li ◽  
Shudong Chen ◽  
Zhengfei Shan ◽  
Liyan Bi ◽  
Shengqiang Yu ◽  
...  

We investigated the effect of miR-182-5p on the viability, proliferation, invasion, and migration ability of human gastric cells by regulating the expression of RAB27A. Real-time PCR assay was used to detect the expression of miR-182-5 and RAB27A in human gastric carcinoma tissues, para-carcinoma tissues, and different cell lines. Western blotting was also used to determine the RAB27A expression in both tissues and cell lines. We chose the HGC-27 cell line as experiment subject as it demonstrated the highest miR-182-5p level. HGC-27 cells were transfected with different vectors and the cell viability, mitosis, invasion, and migration ability were measured through MTT assay, flow cytometry (FCM) analysis, Transwell assay, and wound healing assay. In comparison with the normal tissues, miR-182-5p is expressed at a higher level in gastric cancer (GC) tissues, while RAB27A is expressed at a lower level in cancerous tissues. The down-regulation of miR-182-5p and up-regulation of RAB27A can significantly decrease the viability, migration, invasion, and mitosis of HGC-27 cells. The target relationship between miR-182-5p and RAb27A was confirmed through a dual-luciferase reporter gene assay and Western blot assay. miR-182-5p enhances the viability, mitosis, migration, and invasion of human GC cells by down-regulating RAB27A.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110093
Author(s):  
Mingxin Liu ◽  
Hong Wu ◽  
Yiqiang Liu ◽  
Yan Tan ◽  
Songtao Wang ◽  
...  

MiR-326 functions as an antioncogene in the several types of cancer. However, the underling mechanisms through which miRNA-326 regulates the anti-carcinogenesis of lung adenocarcinoma have remained elusive. The aim of this study was to explore the role and regulatory mechanism of miR-326 in cell proliferation, invasion, migration and apoptosis in lung adenocarcinoma. Quantitative real-time PCR (qRT-PCR) was used to detect the expression pattern of miR-326 in human bronchial epithelial cells (HBES-2B), 4 kinds of lung adenocarcinoma cell lines (H23, H1975, H2228, H2085) and 20 lung adenocarcinoma tissues. Then, H23 cells were infected with miR-326 mimics, miR-326 inhibitors and si-ZEB1 to build up-regulated miR-326 cell lines, down-regulated ZEB1(zinc-finger-enhancer binding protein 1)cell lines, simultaneous down-regulated ZEB1 and miR-326 cell lines. Moreover, CCK-8 assay, transwell invasion assay, wound healing assay and flow cytometry assay were employed to examine the effects of miR-326 and ZEB1 on the proliferation, invasion, migration and apoptosis abilities of H23 cells. Western blot was performed to explore the effects of miR-326 and ZEB1 on the expression of invasion and migration related proteins N-cadherin, E-cadherin, MMP7, MMP13, SLUG and apoptotic proteins PARP, BAX. On the mechanism, a dual-luciferase reporter gene was used to measure the target relationship between miR-326 and ZEB1. MiR-326 expression was significantly downregulated in lung adenocarcinoma tissues and cells. Overexpression of miR-326 significantly inhibited the malignant behaviors of H23 cells. Mechanically, luciferase reporter assay showed that ZEB1 was a direct target of miR-326. MiR-326 mimic downregulated the expression of ZEB1. Furthermore, knocking down ZEB1 strongly inhibited the proliferation, invasion and migration of H23 cells but promoted apoptosis. MiR-326 could target ZEB1 to inhibit the proliferation, invasion and migration of lung adenocarcinoma cells and promote apoptosis, which is a potential therapeutic target for lung adenocarcinoma.


2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.


2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Juntong Wang ◽  
Jingshun Gu ◽  
Aiwu You ◽  
Jun Li ◽  
Yuyan Zhang ◽  
...  

Abstract Objective: The role of lncRNAs in tumor has been widely concerned. The present study took HAS2-AS1 (the antisense RNA 1 of HAS2) as a starting point to explore its expression in glioma and its role in the process of migration and invasion, providing a strong theoretical basis for mining potential therapeutic targets of glioma. Methods: Clinical data of glioma were obtained from The Cancer Genome Atlas (TCGA) database and differentially expressed lncRNAs were analyzed by edgeR. The hTFtarget database was used to predict the upstream transcription factors of HAS2-AS1 and the JASPAR website was used to predict the binding sites of human upstream transcription factor 1 (USF1) and HAS2-AS1. qRT-PCR was used to detect the expressions of HAS2-AS1 and USF1 in glioma tissues and cell lines. The effects of silencing HAS2-AS1 on the migration and invasion of cancer cells were verified by wound healing and Transwell invasion assays. The chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were applied to demonstrate the binding of USF1 and HAS2-AS1 promoter region. Western blot was used to detect the expressions of epithelial–mesenchymal transition (EMT)-related proteins. Results: HAS2-AS1 was highly expressed in glioma tissues and cells, and was significantly associated with poor prognosis. Silencing HAS2-AS1 expression inhibited glioma cell migration, invasion and EMT. USF1 was highly expressed in glioma and positively correlated with HAS2-AS1. The transcription of HAS2-AS1 was activated by USF1 via binding to HAS2-AS1 promoter region, consequently potentiating the invasion and migration abilities of glioma cells. Conclusion: These results suggested that the transcription factor USF1 induced up-regulation of lncRNA HAS2-AS1 and promoted glioma cell invasion and migration.


Sign in / Sign up

Export Citation Format

Share Document