Autoimmune Cytopenias Occurring after Treatment with Chemoimmunotherapy for Non-Hodgkin Lymphomas

2019 ◽  
Vol 141 (2) ◽  
pp. 79-83 ◽  
Author(s):  
Satoko Oka ◽  
Masaharu Nohgawa

Autoimmune diseases, including autoimmune hemolytic anemia and immune thrombocytopenic purpura, have been described in patients with non-Hodgkin lymphoma (NHL) after immunochemotherapy. However, the underlying pathogenesis remains unclear. We examined NHL patients with autoimmune cytopenia and all patients were treated with rituximab-containing therapy. The present results showed reversed imbalances in helper/suppressor T-cell populations, and an immune system imbalance may have contributed to immunological abnormalities. Although the relationship between imbalances in helper/suppressor T-cell populations and the development of auto-antibody production after chemotherapies currently remains unclear, the immunosuppressive effects of immunochemotherapy may be a contributing factor. The long-term monitoring of T-cell populations after immunochemotherapies is important.

1986 ◽  
Vol 164 (3) ◽  
pp. 962-967 ◽  
Author(s):  
M F Luciani ◽  
J F Brunet ◽  
M Suzan ◽  
F Denizot ◽  
P Golstein

At least some long-term in vitro-cultured cytotoxic T cell clones and uncloned cell populations are able, in the presence of Con A, to lyse other cells, to be lysed by other cells, but not to lyse themselves. This as-yet-unexplained result may have implications as to the mechanism of T cell-mediated cytotoxicity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2491-2491
Author(s):  
C.J.M. Halkes ◽  
I Jedema ◽  
H.M. van Egmond ◽  
L van der Fits ◽  
J.H.F. Falkenburg ◽  
...  

Abstract Abstract 2491 Alemtuzumab (ALT) is a monoclonal anti CD52 antibody used for the treatment of CD52 positive lymphoid malignancies and to deplete T cells in vivo and in vitro to prevent graft rejection or GVHD after allogeneic stem cell transplantation (alloSCT). Membrane CD52 expression depends on the presence of a glycosylphosphatidylinositol (GPI) anchor. GPI deficiency is frequently found in small populations of normal and malignant hematopoietic cells, including T and B cells (frequencies from <0.01 to 2%). These cells lack expression of GPI-linked proteins like CD52 as can be detected by absence of staining of FLAER, which is an aerolysin that specifically binds to mammalian GPI anchors. After alloSCT using ALT for T cell depletion, reconstitution of FLAER and CD52 double negative cells is seen, and outgrowth of CD52 negative malignant cell populations has been found after single agent treatment with ALT in malignant diseases. However, GPI deficient cells have been suggested to have a lower proliferative potential and a decreased survival due to their increased susceptibility to spontaneous complement mediated cell lysis, possibly explaining the infrequent dominant outgrowth of GPI deficient clones in healthy individuals. Sézary Syndrome (SS) is an aggressive cutaneous T cell lymphoma characterized by the presence of high numbers of neoplastic T cells expressing CD4 and CD52 in peripheral blood, lymph nodes and skin. Clinical responses in SS patients after single drug treatment with low dosed ALT have been described by several investigators. However, in 6 out of 6 patients analyzed, we found a small population of CD52 and FLAER negative Sézary cells, illustrating that a GPI negative subpopulation is frequently observed which may lead to outgrowth of CD52 negative Sézary cells. We treated 3 patients with successive courses of low dose ALT (10 mg subcutaneously once weekly until circulating malignant cells were < 1,000/mm3) and followed the kinetics of CD52- and CD52+ Sézary cells. Before ALT treatment, a CD4+CD52-FLAER- T cell population was found in all three patients (0.01–0.06% of all circulating CD4+ T cells). As expected, a rapid decrease in absolute numbers of CD4+CD52+FLAER+ cells was observed after ALT treatment (decrease 94 to 100%). Surprisingly, despite the absence of the CD52 target molecule, the absolute number of CD4+CD52-FLAER- T cells also decreased after the first and second treatment cycles in all three patients (decreases between 22 and 96%), indicating that the massive in vivo ALT mediated lysis of CD52+ Sézary cells coincided with collateral damage of CD52- Sézary cells. Between successive treatment courses in the absence of circulating ALT, the absolute numbers of CD4+CD52+FLAER+ T cells showed a more rapid increase compared to CD4+CD52-FLAER- T cells in all patients (median 193 fold increase (range 17–896) versus 9 fold increase (range 2–144) respectively), illustrating a decreased in vivo proliferative potential of these GPI negative cells. After repeated doses of ALT, one of the patients developed resistance to ALT treatment. Phenotype analysis revealed that 97% of the 23,000/mm3 circulating Sézary cells were CD4+CD52-FLAER-. Clonality analysis showed that CD4+CD52+FLAER+ and CD4+CD52-FLAER–Sézary cell populations expressed identical T cell receptor V-beta chains demonstrating that both cell populations are part of the same initial clone of Sézary cells. At present, one year after the start of ALT treatment, reponses are still observed in both other patients without overgrowth of a CD4+CD52-FLAER–Sézary cells. We conclude that despite presence of small populations of CD52 and GPI negative cells in patients with Sézary Syndrome, all patients respond to treatment with alemtuzumab. CD52 negative, GPI deficient Sézary cells showed high susceptibility to collateral damage during antibody treatment. During treatment intervals, CD52+ cells showed a faster recovery compared to CD52- cells, indicating a lower proliferative potential of the GPI deficient Sézary cells. Although, as shown in one patient, ultimate outgrowth of GPI deficient CD52- sezary cells can occur, the capacity to achieve long term control of both CD52+ and CD52- Sézary cells in several patients offers a rationale for treatment of SS with alemtuzumab, possibly in combination with a low dosed cytotoxic drug Disclosures: Off Label Use: Alemtuzumab for treatment of Sezary Syndrome.


2020 ◽  
Vol 8 (2) ◽  
pp. e001133
Author(s):  
Esmé TI van der Gracht ◽  
Mark JA Schoonderwoerd ◽  
Suzanne van Duikeren ◽  
Ayse N Yilmaz ◽  
Felix M Behr ◽  
...  

BackgroundAdenoviral vectors emerged as important platforms for cancer immunotherapy. Vaccination with adenoviral vectors is promising in this respect, however, their specific mechanisms of action are not fully understood. Here, we assessed the development and maintenance of vaccine-induced tumor-specific CD8+ T cells elicited upon immunization with adenoviral vectors.MethodsAdenoviral vaccine vectors encoding the full-length E7 protein from human papilloma virus (HPV) or the immunodominant epitope from E7 were generated, and mice were immunized intravenously with different quantities (107, 108 or 109 infectious units). The magnitude, kinetics and tumor protection capacity of the induced vaccine-specific T cell responses were evaluated.ResultsThe adenoviral vaccines elicited inflationary E7-specific memory CD8+ T cell responses in a dose-dependent manner. The magnitude of these vaccine-specific CD8+ T cells in the circulation related to the development of E7-specific CD8+ tissue-resident memory T (TRM) cells, which were maintained for months in multiple tissues after vaccination. The vaccine-specific CD8+ T cell responses conferred long-term protection against HPV-induced carcinomas in the skin and liver, and this protection required the induction and accumulation of CD8+ TRM cells. Moreover, the formation of CD8+ TRM cells could be enhanced by temporal targeting CD80/CD86 costimulatory interactions via CTLA-4 blockade early after immunization.ConclusionsTogether, these data show that adenoviral vector-induced CD8+ T cell inflation promotes protective TRM cell populations, and this can be enhanced by targeting CTLA-4.


2003 ◽  
Vol 111 (3) ◽  
pp. 573-579 ◽  
Author(s):  
Javier Chinen ◽  
Howard M. Rosenblatt ◽  
E.O'Brian Smith ◽  
William T. Shearer ◽  
Lenora M. Noroski

Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 913 ◽  
Author(s):  
Claridge ◽  
Paull ◽  
Welbourne

Establishing trends in endangered fauna against management efforts is a key but often challenging enterprise. Camera-traps offer a new and literal window into monitoring many different mammalian species. Getting it right demands seeking baseline information about how often target species interact with these devices, prior to setting a long-term monitoring strategy. We used a camera-trap array to collect detection data on three species of threatened ground-dwelling marsupials in south-eastern mainland Australia. Over a four-year period, occupancy estimates for two species of bandicoot (southern brown bandicoot Isoodon obesulus and long-nosed bandicoot Perameles nasuta) and a single species of rat-kangaroo (long-nosed potoroo Potorous tridatylus) were generated. These estimates were variously robust depending on visitation history, but nevertheless indicated persistence of these rare and otherwise under threat species. Detection probability for each species differed between study areas, type of management and with complexity of ground and shrub vegetation cover. The relationship between detection and vegetation structure dictated that survey effort was only robust where conditions were optimal for a given species. Outside of that further survey effort would be required to have confidence in survey outcome. In the future this would demand a different sampling strategy, be that through lengthening survey time or adding additional camera units at sites.


2020 ◽  
Vol 6 (27) ◽  
pp. eaba7443
Author(s):  
Michelle H. Nelson ◽  
Hannah M. Knochelmann ◽  
Stefanie R. Bailey ◽  
Logan W. Huff ◽  
Jacob S. Bowers ◽  
...  

How naturally arising human CD4+ T helper subsets affect cancer immunotherapy is unclear. We reported that human CD4+CD26high T cells elicit potent immunity against solid tumors. As CD26high T cells are often categorized as TH17 cells for their IL-17 production and high CD26 expression, we posited these populations would have similar molecular properties. Here, we reveal that CD26high T cells are epigenetically and transcriptionally distinct from TH17 cells. Of clinical importance, CD26high and TH17 cells engineered with a chimeric antigen receptor (CAR) regressed large human tumors to a greater extent than enriched TH1 or TH2 cells. Only human CD26high T cells mediated curative responses, even when redirected with a suboptimal CAR and without aid by CD8+ CAR T cells. CD26high T cells cosecreted effector cytokines, produced cytotoxic molecules, and persisted long term. Collectively, our work underscores the promise of CD4+ T cell populations to improve durability of solid tumor therapies.


Sign in / Sign up

Export Citation Format

Share Document