scholarly journals DNA Methylation-Based Regulation of Human Bone Marrow-Derived Mesenchymal Stem/Progenitor Cell Chondrogenic Differentiation

2019 ◽  
Vol 207 (3-4) ◽  
pp. 115-126 ◽  
Author(s):  
Yu Nomura ◽  
Emilio Satoshi Hara ◽  
Yuya Yoshioka ◽  
Há Thi Nguyen ◽  
Shuji Nosho ◽  
...  

Stem cells have essential applications in in vitro tissue engineering or regenerative medicine. However, there is still a need to understand more deeply the mechanisms of stem cell differentiation and to optimize the methods to control stem cell function. In this study, we first investigated the activity of DNA methyltransferases (DNMTs) during chondrogenic differentiation of human bone marrow-derived mesenchymal stem/progenitor cells (hBMSCs) and found that DNMT3A and DNMT3B were markedly upregulated during hBMSC chondrogenic differentiation. In an attempt to understand the effect of DNMT3A and DNMT3B on the chondrogenic differentiation of hBMSCs, we transiently transfected the cells with expression vectors for the two enzymes. Interestingly, DNMT3A overexpression strongly enhanced the chondrogenesis of hBMSCs, by increasing the gene expression of the mature chondrocyte marker, collagen type II, more than 200-fold. Analysis of the methylation condition in the cells revealed that DNMT3A and DNMT3B methylated the promoter sequence of early stem cell markers, NANOG and POU5F1(OCT-4). Conversely, the suppression of chondrogenic differentiation and the increase in stem cell markers of hBMSCs were obtained by chemical stimulation with the demethylating agent, 5-azacitidine. Loss-of-function assays with siRNAs targeting DNMT3A also significantly suppressed the chondrogenic differentiation of hBMSCs. Together, these results not only show the critical roles of DNMTs in regulating the chondrogenic differentiation of hBMSCs, but also suggest that manipulation of DNMT activity can be important tools to enhance the differentiation of hBMSCs towards chondrogenesis for potential application in cartilage tissue engineering or cartilage regeneration.

2014 ◽  
Vol 55 (3) ◽  
pp. 549-560 ◽  
Author(s):  
Sonia Bergante ◽  
Enrica Torretta ◽  
Pasquale Creo ◽  
Nadia Sessarego ◽  
Nadia Papini ◽  
...  

2016 ◽  
Vol 4 (20) ◽  
pp. 3562-3574 ◽  
Author(s):  
E. A. Aisenbrey ◽  
S. J. Bryant

Three dimensional hydrogels are a promising vehicle for delivery of adult human bone-marrow derived mesenchymal stem cells (hMSCs) for cartilage tissue engineering.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Ziling Wang ◽  
Rong Jiang ◽  
Lu Wang ◽  
Xiongbin Chen ◽  
Yue Xiang ◽  
...  

Objectives. To demonstrate the effect of Ginsenoside Rg1 on the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Subsequently, a rational mechanism for the detection of Rg1 which affects mesenchymal stem cell differentiation was explored. Methods. Flow cytometry is used for cell identification. The differentiation ability of hBM-MSCs was studied by differentiation culture. SA-β-gal staining is used to detect cell senescence levels. Western blot and immunofluorescence were used to determine protein expression levels. RT-qPCR is used to detect mRNA expression levels. Results. Rg1 regulates the differentiation of hBM-MSCs. Differentiation culture analysis showed that Rg1 promoted cells to osteogenesis and chondrogenesis. Western blot results showed that Rg1 regulated the overactivation of the β-catenin signaling pathway and significantly adjusted the phosphorylation of GSK-3β. GSK-3β inhibitor (Licl) significantly increased Rg1-induced phosphorylation of GSK-3β, which in turn reduced Rg1-induced differentiation of hBM-MSCs. Conclusion. Ginsenoside Rg1 can reduce the excessive activation of the Wnt pathway in senescent cells by inhibiting the phosphorylation of GSK-3β and regulate the mesenchymal stem cell differentiation ability.


2014 ◽  
Vol 1723 ◽  
Author(s):  
Wei Zhu ◽  
Michael Keidar ◽  
Lijie Grace Zhang

ABSTRACTArticular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to its low cell density and absence of blood vessels. It has extensively reported tissue engineered scaffold can be a promising approach for cartilage repair. However, there still remains an inherent lack of desirable scaffolds that stimulate cartilage regrowth with appropriate functional properties. Therefore, in this study, we develop a biomimetic cartilage substitute comprising of electrospun polycaprolactone (PCL) with cold atmospheric plasma (CAP) modified cell favorable surface and sustained bioactive factor (bovine serum albumin (BSA) or transforming growth factor beta 1 (TGF-β1)) incorporated microspheres inside for improving stem cell chondrogenesis and cartilage regeneration. Scanning electron microscopy (SEM) analysis showed the drug delivery spheres homogeneously distribution in the fibrous scaffold. Furthermore, CAP treatment renders the scaffold’s surface more hydrophilic and results in more specific vitronectin adsorption as illustrated by contact angle and ELISA testing. Our results showed that the CAP treated scaffold can greatly improve growth and chondrogenic differentiation (such as increased glycosaminoglycan (GAG) synthesis) of human bone marrow-derived mesenchymal stem cells (MSCs).


Carbon ◽  
2016 ◽  
Vol 97 ◽  
pp. 1-13 ◽  
Author(s):  
Benjamin Holmes ◽  
Xiuqi Fang ◽  
Annais Zarate ◽  
Michael Keidar ◽  
Lijie Grace Zhang

Sign in / Sign up

Export Citation Format

Share Document