scholarly journals Birth of offspring from spermatid or somatic cell by co-injection of PLCζ-cRNA

Reproduction ◽  
2020 ◽  
Vol 160 (2) ◽  
pp. 319-330
Author(s):  
Naoki Hirose ◽  
Sayaka Wakayama ◽  
Rei Inoue ◽  
Junya Ito ◽  
Masatoshi Ooga ◽  
...  

Artificial oocyte activation is important for assisted reproductive technologies, such as fertilization with round spermatids (ROSI) or the production of cloned offspring by somatic cell nuclear transfer (SCNT). Recently, phospholipase Cζ (PLCζ)-cRNA was used to mimic the natural process of fertilization, but this method required the serial injection of PLCζ-cRNA and was found to cause damage to the manipulated oocytes. Here we tried to generate offspring derived from oocytes that were fertilized using round spermatid or somatic cell nuclear transfer with the co-injection of PLCζ-cRNA. After co-injecting round spermatids and 20 ng/µL of PLCζ-cRNA into the oocytes, most of them became activated, but the activation process was delayed by more than 1 h. With the co-injection method, the rate of blastocyst formation in ROSI embryos was higher (64%) compared with that of the serial injection method (55%). On another note, when SCNT was performed using the co-injection method, the cloned offspring were obtained with a higher success rate compared with the serial-injection method. However, in either ROSI or SCNT embryos, the birth rate of offspring via the co-injection method was similar to the Sr activation method. The epigenetic status of ROSI and SCNT zygotes that was examined showed no significant difference among all activation methods. The results indicated that although the PLCζ-cRNA co-injection method did not improve the production rate of offspring, this method simplified oocyte activation with less damage, and with accurate activation time in individual oocytes, it can be useful for the basic study of oocyte activation and development.

2013 ◽  
Vol 25 (1) ◽  
pp. 164
Author(s):  
H. J. Oh ◽  
M. J. Kim ◽  
G. A. Kim ◽  
J. Choi ◽  
E. J. Park ◽  
...  

Somatic cell nuclear transfer (SCNT) in assisted reproductive technologies has been considered for the conservation of valuable or endangered animals. Dogs that were originally bred for hunting, such as beagles, have an exceptional ability to detect a particular smell from many others. For that reason, the beagles have been used to detect quarantine risk items from a wide range of goods in assorted luggage without scaring or disrupting the passengers. Though very useful and highly in need, elite quarantine sniffing beagles with excellent abilities are rare; much time, effort, and money are required in producing them. Here, we have applied SCNT for propagation of elite quarantine sniffing dogs to save time and economic burden. Ear fibroblasts from a 10-year-old adult male elite quarantine sniffing beagle were isolated and cultured in vitro as donor cells. For SCNT, in vivo-matured oocytes, obtained by flushing the uterine tubes of oocyte donors (mixed breed), were used. The oocytes were enucleated, microinjected with donor cells, fused by electrical stimulation, and activated chemically. Reconstructed oocytes were surgically transferred into the uterine tube of naturally synchronous recipient females. A total of 212 activated cloned embryos were transferred into 12 female recipient dogs and 4 recipients became pregnant. The 4 pregnant recipients delivered 4 pups through caesarean section or natural delivery, but 1 died right after birth and did not show an abnormality. Other live puppies exhibited normal phenotypes; their appearance was similar to that of the donor dog. All cloned pups were genetically identical to the donor dog and their mitochondrial DNA was from their oocyte donor dogs. When the cloned pups were 16 weeks old, we conducted a Volhard test, which is commonly used to describe the following puppy aptitudes: social attraction, following, restraint, social dominance, elevation dominance, retrieving, touch sensitivity, sound sensitivity, and sight sensitivity. Dog behavior data on differences in transcript abundance were analyzed by a general linear mixed model. The 3 cloned pups showed similar behavioral tendencies. The present study demonstrates that NT technique using donor cell derived from 1 elite quarantine sniffing dog is useful to produce a large number of quarantine sniffing dogs. This study was supported by RDA (no. PJ0089752012), RNL Bio (no. 550-20120006), IPET (no. 311062-04-1-SB010), Research Institute for Veterinary Science, Nestlé Purina Korea, and TS Corporation.


Endocrinology ◽  
2014 ◽  
Vol 155 (12) ◽  
pp. 5011-5023 ◽  
Author(s):  
Helio A. Martins-Júnior ◽  
Fábio L. V. Pinaffi ◽  
Rosineide C. Simas ◽  
Adriana K. Tarouco ◽  
Christina R. Ferreira ◽  
...  

The plasma levels of corticosteroids and sex steroids during pregnancy are key indicators of mammalian placental function and the onset of parturition. Steroid hormones are believed to be disturbed in pregnancies produced using assisted reproductive technologies (ARTs) due to placental dysfunction and the frequently observed lack of parturition signals. To elucidate the plasma steroid dynamics, a liquid chromatography-tandem mass spectrometry method was developed and used to determine the levels of corticosteroids (corticosterone, 11-deoxycortisol, and cortisol) and their direct precursors (progesterone and 17α-OH-progesterone) as well as sex steroids (androstenedione, estrone, estrone sulfate, testosterone, and 17β-estradiol) in bovine plasma. The levels of these 10 steroids in recipient cows carrying naturally conceived (control), in vitro fertilized (IVF), or cloned (somatic cell nuclear transfer) conceptuses were compared during late-term pregnancy (30 days before parturition), during near-term pregnancy (1 day before parturition), and on the day of parturition (day 0). Significant differences were observed among the corticosteroid levels: higher levels of corticosterone, 11-deoxycortisol, and cortisol were detected in cloned pregnancies at day 30; lower levels of corticosterone were observed in ART-derived pregnancies at days 1 and 0; and estrone and estradiol levels were higher in IVF pregnancies throughout the final development. These results suggested an upregulation of the P450C11 and P450C21 enzymes 30 days before parturition in somatic cell nuclear transfer pregnancies and an overactivation of the aromatase enzyme in IVF pregnancies. Taken together, the monitoring of multiple steroid hormones revealed that the pregnancies obtained using ART exhibited plasma steroid concentration dynamics compatible with the dysregulation of steroidogenic tissues.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 688-697
Author(s):  
Sharmila Ghosh ◽  
Candice F. Carden ◽  
Rytis Juras ◽  
Mayra N. Mendoza ◽  
Matthew J. Jevit ◽  
...  

We report 2 novel autosomal translocations in the horse. In Case 1, a breeding stallion with a balanced t(4p;30) had produced normal foals and those with congenital abnormalities. Of his 9 phenotypically normal offspring, 4 had normal karyotypes, 4 had balanced t(4p;30), and 1 carried an unbalanced translocation with tertiary trisomy of 4p. We argue that unbalanced forms of t(4p;30) are more tolerated and result in viable congenital abnormalities, without causing embryonic death like all other known equine autosomal translocations. In Case 2, two stallions produced by somatic cell nuclear transfer from the same donor were karyotyped because of fertility issues. A balanced translocation t(12q;25) was found in one, but not in the other clone. The findings underscore the importance of routine cytogenetic screening of breeding animals and animals produced by assisted reproductive technologies. These cases will contribute to molecular studies of translocation breakpoints and their genetic consequences in the horse.


2015 ◽  
Vol 27 (1) ◽  
pp. 104
Author(s):  
N. L. Selokar ◽  
M. Saini ◽  
H. Agrawal ◽  
P. Palta ◽  
M. S. Chauhan ◽  
...  

Cryopreservation of semen allows preservation of somatic cells, which can be used for the production of progeny through somatic cell nuclear transfer (SCNT). This approach could enable restoration of valuable high-genetic-merit progeny-tested bulls, which may be dead but the cryopreserved semen is available. We have successfully produced a live buffalo calf by SCNT using somatic cells isolated from >10 year old frozen semen (Selokar et al. 2014 PLoS One 9, e90755). However, the calf survived only for 12 h, which indicates faulty reprogramming of these cells. The present study was, therefore, carried out to study the effect of treatment with trichostatin A (TSA), an epigenetic modifier, on reprogramming of these cells. Production of cloned embryos and determination of quality and level of epigenetic markers in blastocysts were performed according to the methods described previously (Selokar et al. 2014 PLoS One 9, e90755). To examine the effects of TSA (0, 50, and 75 nM), 10 separate experiments were performed on 125, 175, and 207 reconstructed embryos, respectively. The percentage data were analysed using SYSTAT 12.0 (SPSS Inc., Chicago, IL, USA) after arcsine transformation. Differences between means were analysed by one-way ANOVA followed by Fisher's least significant difference test for significance at P < 0.05. When the reconstructed buffalo embryos produced by hand-made clones were treated with 0, 50, or 75 nM TSA post-electrofusion for 10 h, the cleavage percentage (100.0 ± 0, 94.5 ± 2.3, and 96.1 ± 1.2, respectively) and blastocyst percentage (50.6 ± 2.3, 48.4 ± 2.7, and 48.1 ± 2.6, respectively), total cell number (274.9 ± 17.4, 289.1 ± 30.1, and 317.0 ± 24.2, respectively), and apoptotic index (3.4 ± 0.9, 4.5 ± 1.4, and 5.6 ± 0.7, respectively) in Day 8 blastocysts were not significantly different among different groups. The TSA treatment increased (P < 0.05) the global level of H4K5ac but not that of H3K18a in embryos treated with 50 or 75 nM TSA compared with that in controls. In contrast, the level of H3K27me3 was significantly lower (P < 0.05) in cloned embryos treated with 75 nM TSA than in embryos treated with 50 nM TSA or controls. The ultimate test of the reprogramming potential of any donor cell type is its ability to produce live offspring. To examine the in vivo developmental potential of the 0, 50, or 75 nM TSA treated embryos, we transferred Day 8 blastocysts, 2 each to 5, 6, and 5 recipients, respectively, which resulted in 2 pregnancies from 75 nM TSA treated embryos. However, one pregnancy was aborted in the first trimester and the other in the third trimester. In conclusion, TSA treatment of reconstructed embryos produced from semen-derived somatic cells alters their epigenetic status but does not improve the live birth rate. We are currently optimizing an effective strategy to improve the cloning efficiency of semen-derived somatic cells.


2009 ◽  
Vol 21 (1) ◽  
pp. 109 ◽  
Author(s):  
G. S. Ajithkumar ◽  
B. Krishnamohan ◽  
B. C. Sarkhel

For cloning by somatic cell nuclear transfer (SCNT) in goat, there are conflicting reports about the proper time of enucleation after IVM of oocytes, which varied from 20 to 27 h (Das SK et al. 2003 Small Rumin. Res. 48, 217–225; Keefer CL et al. 2002 Biol. Reprod. 66, 199–203; Daniel SM et al. 2007 Small Rumin. Res. 77, 45–50). The present investigation has been undertaken to standardize the optimum time of enucleation after IVM of oocytes. The hypothesis behind the study was that enucleation performed during early stages of maturation maintains the MII plate and polar body (PB) in a closer position and therefore makes it easy to enucleate. To test this hypothesis, caprine COCs were aspirated from slaughterhouse ovaries of goats and good quality oocytes were matured in TCM 199 containing 7.5% FBS supplemented with FSH, LH, and estradiol. Enucleation was performed in four different interval groups after IVM (20–23 h, 23–26 h, 26–29 h and 29–32 h). The enucleation of oocytes was conducted as per method described by (Du F et al. 2006 Theriogenology 65, 642–665). Briefly, IVM oocytes were enucleated by squashing and compressing out the first PB along with 10 to 15% of its surrounding cytoplasm with an enucleation needle through a slit made on the zona pellucida. Successful enucleation was confirmed by fluorescent microscopy of removed ooplasm after staining with Hoechst 33342. The enucleation percentage values after arcsine transformation was analyzed by completely randomized design ANOVA. The result of enucleation at different intervals has been summarized in Table 1. There was no significant difference (P > 0.05) in number of PB observed among the four enucleation groups, however the enucleation percentage decreased significantly (P < 0.05) with increase in enucleation time (70.29% and 70.51% in G1 and G2 v. 59.52% and 55.61% in G3 and G4 respectively). With increase in time of enucleation after maturation the size of perivitelline space increases, causing deviation of PB from spindle, thus the success rate of enucleation is reduced (Song K et al. 2007 Repro. Fertil. Dev. 19, 293–294). In G1 and G2 groups the PB and MII chromosomes are located close together with stronger spindle force that requires minimum ooplasm to be removed with higher percentage of successful enucleation. Hence, it was concluded that G1 and G2 groups may be considered as most efficient for enucleation but the developmental potential of reconstructed oocytes after nuclear transfer in each group needs to be tested (study under progress). Table 1.Enucleation results at different intervals


2020 ◽  
Vol 32 (2) ◽  
pp. 135
Author(s):  
M. Yauri Felipe ◽  
M. Duque Rodríguez ◽  
A. De Stéfano ◽  
D. Salamone

Cloning endangered species has the limitation that generally the number of available oocytes is limited. Reprogramming the nuclei heterospecifically using an enucleated oocyte from a different species is an alternative. Aggregation of SCNT (somatic cell nuclear transfer) embryos from the same specie results in improved embryo development. However, after aggregation of heterospecific SCNT embryos from different genera, no effects were observed (Moro et al. 2015 Reproduction 50, 1-10). The objective of this study was to evaluate the influence of aggregation of yak (Bos grunniens) embryos produced by heterospecific SCNT using enucleated oocytes from an animal from the same genus Bos taurus. As control homospecific SCNT of Bos taurus, parthenogenic zone-free embryos and IVF embryos were used. Cumulus-oocyte complexes were recovered from bovine slaughterhouse ovaries by follicular aspiration. The cumulus-oocyte complexes were matured in tissue culture medium 199 containing 10% fetal bovine serum, 10μgmL−1 FSH, 0.3mM sodium pyruvate, 100mM cysteamine, and 2% antibiotic-antimycotic for 22h, at 6.5% CO2 in humidified air and 38.5°C. After denudation, mature oocytes were stripped of the zona pellucida using a protease and then enucleated by micromanipulation. Staining was performed with Hoechst 33342 to observe MII. Enucleated oocytes were placed in phytohemagglutinin to induce adherence with the donor cell followed by electrofusion. All reconstituted embryos were activated using ionomcine. This was followed by a treatment with 6-dimethylaminopurine for 3h. Zona-free reconstituted cloned embryos were cultured in the wells of the well system, placing one (1×) or two (2×) per microwell, in synthetic oviductal fluid medium. The experimental groups were parthenogenic zone free; IVF; reconstituted embryos bull fibroblast-enucleated oocyte from cow (BC1×); reconstituted embryos yak fibroblast-enucleated oocyte from cow (YC1×); and reconstituted embryos aggregated yak fibroblast-enucleated oocyte from cow (YC2×). In all experimental groups, cleavage of at least one embryo in the wells and blastocyst formation at Day 7 were assessed. The effect of cloned embryo aggregation on blastocyst rates was analysed using Fisher exact tests (GraphPad Prisma 8), and results are shown on Table 1. Results demonstrated that aggregation of two SCNT heterospecific embryos increased the blastocyst formation rate of yak (P&lt;0.05). In conclusion aggregation in yak heterospecific SCNT embryos from species of the same genus (Bos) can improve development to blastocyst. Table 1.Aggregation of yak heterospecific somatic cell nuclear transfer embryos Experimental group1 No. of embryos No. of embryos-wells2 Cleavage (%) Blastocyst (%) PZF 68 68 66 (97.06%)a 17 (25.00%)acd IVF 89 - 81 (91.01%)ab 39 (43.82%)b BC1× 45 45 41 (91.11%)b 6 (13.33%)cd YC1× 101 101 77 (76.24%)c 14 (13.86%)c YC2× 134 67 61 (91.04%)ab 21 (31.34%)ab a-dDifferent superscripts in the same column indicate significant difference (Fisher's exact test, P&lt;0.05). 1PZF, parthenogenetic zone free; IFV, IVF fecundation; BC1×, clone of bovine; YC1×, clone of yak-bovine; YC2×, clone of yak-bovine added. 2Wells used with embryos.


Zygote ◽  
2017 ◽  
Vol 25 (4) ◽  
pp. 453-461 ◽  
Author(s):  
Xiao-Chen Li ◽  
Qing Guo ◽  
Hai-Ying Zhu ◽  
Long Jin ◽  
Yu-Chen Zhang ◽  
...  

SummaryWe examined the in vitro developmental competence of parthenogenetic activation (PA) oocytes activated by an electric pulse (EP) and treated with various concentrations of AZD5438 for 4 h. Treatment with 10 µM AZD5438 for 4 h significantly improved the blastocyst formation rate of PA oocytes in comparison with 0, 20, or 50 µM AZD5438 treatment (46.4% vs. 34.5%, 32.3%, and 24.0%, respectively; P < 0.05). The blastocyst formation rate was higher in the group treated with AZD5438 for 4 h than in the groups treated with AZD5438 for 2 or 6 h (42.8% vs. 38.6% and 37.2%, respectively; P > 0.05). Furthermore, 66.67% of blastocysts derived from these AZD5438-treated PA oocytes had a diploid karyotype. The blastocyst formation rate of PA and somatic cell nuclear transfer (SCNT) embryos was similar between oocytes activated by an EP and treated with 2 mM 6-dimethylaminopurine for 4 h and those activated by an EP and treated with 10 µM AZD5438 for 4 h (11.11% vs. 13.40%, P > 0.05). In addition, the level of maturation-promoting factor (MPF) was significantly decreased in oocytes activated by an EP and treated with 10 µM AZD5438 for 4 h. Finally, the mRNA expression levels of apoptosis-related genes (Bax and Bcl-2) and pluripotency-related genes (Oct4, Nanog, and Sox2) were checked by RT-PCR; however, there were no differences between the AZD5438-treated and non-treated control groups. Our results demonstrate that porcine oocyte activation via an EP in combination with AZD5438 treatment can lead to a high blastocyst formation rate in PA and SCNT experiments.


Reproduction ◽  
2013 ◽  
Vol 146 (4) ◽  
pp. 325-333 ◽  
Author(s):  
Rodrigo C Bohrer ◽  
Limei Che ◽  
Paulo B D Gonçalves ◽  
Raj Duggavathi ◽  
Vilceu Bordignon

Phosphorylated histone H2A.x (H2AX139ph) is a key factor for the repair of DNA double-strand breaks (DSBs) and the presence of H2AX139ph foci indicates the sites of DSBs. In this study, we characterized the presence of H2AX139ph during in vitro development of porcine embryos produced by IVF and somatic cell nuclear transfer (SCNT). Pronuclear stage embryos produced by IVF had, on average, 9.2 H2AX139ph foci per pronucleus. The number of H2AX139ph foci was higher in the 2-cell-stage embryos than in the 4-cell-stage embryos fixed at 48 h post-fertilization. The percentage of H2AX139ph-positive nuclei was higher in SCNT embryos that were activated with ionomycin (ION) alone than in those activated with ION and strontium chloride (ION+Sr2+). A negative correlation was found between the percentage of H2AX139ph-positive cells and the total number of cells per embryo in day 7 blastocysts produced by IVF or SCNT. Based on the detection of H2AX139ph foci, the findings of this study indicate that DSBs occur in a high proportion of porcine embryos produced by either IVF or SCNT; fast-cleaving embryos have fewer DSBs than slow-cleaving embryos; the oocyte activation protocol can affect DNA integrity in SCNT embryos; and better-quality blastocysts have fewer DSBs. We propose that the presence of H2AX139ph foci can be a useful marker of embryo quality.


2007 ◽  
Vol 19 (1) ◽  
pp. 163
Author(s):  
Y. Tao ◽  
W. Han ◽  
M. Zhang ◽  
J. Ding ◽  
X. Zhang

We reported the birth of a goat clone produced by somatic cell nuclear transfer. The fusion and activation protocols of reconstructed oocytes and embryo transfer procedure were optimized. The donors of somatic cells were fibroblasts derived from ear skin of a Boer goat while the recipient ooplasm was in vitro-matured oocytes of Huanghuai white goat, an Anhui native goat species. The reconstructed embryos were activated by ionomycin, 6-dimethylaminopurine (6-DMAP), and cytochalasin B (CB) singly or simultaneously (termed as Ionomycin, Ionomycin+6-DMAP, and Ionomycin+6-DMAP+CB). The result showed that the cleavage rate in single ionomycin was significantly lower than that in Ionomycin+6-DMAP and 6-DMAP+CB (34.38% vs. 69.85% and 72.02%; P &lt; 0.05). However, the cleavage rates and blastocyst rates had no significant difference after in vitro culture (P &gt; 0.05). When the cloned embryos were co-cultured with fetal mouse fibroblast monolayer, the blastocyst development rate increased. The reconstructed embryos were equilibrated 1–3 h, 3–6 h, and 6–9 h after fusion, and then activation was undertaken by ionomycin+6-DMAP. We found that the cleavage rates had no significant difference during 1–3 h and 3–6 h (72.58% vs. 72.97%; P &gt; 0.05), but both were significantly higher than during 6–9 h (64.40%) (P &lt; 0.05). A total of 491 reconstructed embryos were surgically transferred into 37 recipient surrogates, Huanghuai white goats with natural estrus. One of those who were treated with hCG after transfer was pregnant and gave birth to a live kid on 153 days. The lamb died accidentally 8 h after birth. The cloned offspring was then dissected and proved well in all organs. Staining of paraffin tissue slices of the viscera suggested that the organs developed well. Microsatellite analysis indicated that the lamb was derived from the somatic cell donor doe genetically.


2012 ◽  
Vol 24 (1) ◽  
pp. 128
Author(s):  
G. Kim ◽  
H. J. Oh ◽  
J. E. Park ◽  
M. J. Kim ◽  
E. J. Park ◽  
...  

Histocompatible tissue has been generated by somatic cell nuclear transfer (SCNT) and the resultant tissues were not rejected by the immune system of the nucleus donors. In addition, many transgenic animals combined with SCNT have been produced. However, in vitro immunogenicity of transgenic cloned animals originated from the same donor cell with nontransgenic cloned animals has not been assessed until now. The objective of this study was to evaluate the in vitro immunogenicity of cloned dogs with each other, between cloned dogs and transgenic cloned dogs and between transgenic cloned dogs with each other by mixed lymphocyte reaction. In this study, we used cloned beagles (BG1, 2) derived from SCNT using fetal fibroblasts (BF3). Serially, 4 transgenic cloned beagles (Ruppy 1–3, 5) were also genetically engineered from the same donor cell, BF3, with red fluorescent protein (RFP) gene inserted into their genome. We used 2 age-matched healthy female beagle dogs as control dogs. They have different 3 DLA types with all cloned dogs. Peripheral blood mononuclear cells (PBMC) of 2 cloned beagles and 4 transgenic cloned beagles were isolated from whole bloods using Ficoll gradient solution. PBMC from each dog were mixed to auto PBMC, other transgenic cloned dogs and non-related control dogs under the experimental designs. All the mixtures were incubated at 37°C for 4 days, adding BrdU labeling reagent and re-incubated for 24 h. Results are expressed in absorbance mean value ± standard deviation of 450-nm wavelength read by microplate reader. Each cell combination was assayed in 8 replicates. In Experiment 1, PBMC of cloned beagles were combined with equal concentrations of another cloned beagle's PBMC. In Experiment 2, PBMC suspension of Ruppy 1–3, 5 were mixed with equal concentrations of another transgenic cloned beagle's PBMC suspension. In Experiment 3, PBMC suspensions of cloned beagles were mixed with PBMC suspensions of transgenic cloned beagles and reverse reaction was performed. Statistical analysis was performed by using Mann-Whitney U test. In Experiment 1, whereas the absorbance value of mixture of cloned dogs and control dogs shows apparent proliferation, auto mixture of each dog and allo-mixture of BG1 and BG2 show no proliferation (Table 1), indicating immunological factors exposed to PBMC in 2 cloned dogs were compatible. In Experiment 2 among transgenic cloned dogs, no evidence of proliferations in mixed allo-PBMC was shown (Table 1), suggesting in vitro immunogenicity between transgenic cloned dogs was also not shown. In Experiment 3 among cloned dogs and transgenic cloned dogs, no significant difference was found (Table 1). In conclusion, cloned dogs derived from SCNT shared immunological phenotype. Next, immunogenicity among transgenic cloned beagle dogs was not shown despite random insertion of a foreign gene. Lastly, cloned beagles and transgenic cloned beagles show lymphocyte antigen compatibility irrespective of having a foreign gene or not. Table 1.The absorbance values of mixed lymphocytes of 4 transgenic cloned dogs and 2 cloned dogs This study was supported by RNL BIO (#0468-20110001), IPET, MKE (#10033839-2011-13) and Natural Balance Korea.


Sign in / Sign up

Export Citation Format

Share Document