LncRNA XIST Contributes to Cisplatin Resistance of Lung Cancer Cells by Promoting Cellular Glycolysis through Sponging miR-101-3p

Pharmacology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Gang Hua ◽  
Zhao-long Zeng ◽  
Yi-ting Shi ◽  
Wei Chen ◽  
Li-feng He ◽  
...  

<b><i>Background:</i></b> Non-small-cell lung carcinoma is one of the most frequently diagnosed cancers. Cisplatin (CDDP) is a currently applied standard anticancer agent for advanced lung cancers. Although effectively clinical response was achieved initially, a large fraction of lung cancer patients developed cisplatin resistance. Therefore, understanding the molecular mechanisms of chemoresistance is crucial for anti-lung cancer therapy. Long non-coding RNA (lncRNA)-X-inactive-specific transcript (XIST) has been reported to be positively associated with multiple cancers. Currently, the precise role and mechanism of XIST in cisplatin resistance of lung cancer have not been elucidated. <b><i>Methods:</i></b> The expression levels of miR-101-3p and lncRNA XIST were detected by qRT-PCR. Cisplatin-resistant lung cancer cell line was established by selecting the survival cells under gradually increased cisplatin treatments. The cell proliferation was detected by MTT assay, and the cellular glucose metabolism rate was evaluated by Seahorse metabolic flux analysis and glucose uptake and lactate product assays. Glycolysis-related protein expression levels were detected by Western blot. Dual luciferase reporter was constructed to determine the lncRNA-miRNA interaction. <b><i>Results:</i></b> Here, we report XIST is significantly upregulated in lung cancer tissues compared with normal lung tissues. In addition, cisplatin-resistant lung cancer cells displayed remarkably elevated XIST expression. We demonstrated that miR-101-3p functioned as a tumor suppressor in lung cancer and sensitized lung cancer cells to cisplatin. Bioinformatics analysis predicted miR-101-3p could be a potential target of XIST through direct binding with it as a competing endogenous RNA, which was further validated from lung tumor tissues and cell lines by luciferase assay. Intriguingly, XIST significantly promoted cellular glycolysis rate of lung cancer cells. The extracellular acidification rate, glucose uptake, and lactate product were elevated by XIST overexpression. On the contrary, miR-101-3p effectively suppressed glycolysis rate. Finally, we demonstrated silencing XIST significantly recovered miR-101-3p expression and downregulated expression of glycolysis key enzymes, a phenotype could be further overridden by miR-101-3p inhibition. <b><i>Conclusions:</i></b> This study reveals a new molecular mechanism for the lncRNA-XIST-promoted cisplatin resistance via sponging miR-101-3p, leading to de-repression of cellular glycolysis. Moreover, these findings warrant further in vivo investigations to study XIST as a potential target to overcome cisplatin resistance.

2020 ◽  
Author(s):  
Ting-Ting Liu ◽  
Rui Li ◽  
Xiao Liu ◽  
Xi-Jia Zhou ◽  
Chen Huo ◽  
...  

Abstract Background: In recent years, LncRNA acts as a member of competing endogenous RNA (ceRNA), playing an important role in drug resistance of lung cancer. The aim of this study was to identify potential biomarkers about cisplatin resistant lung cancer cells using a comprehensive ceRNA network.Methods: GSE6410 (GPL-201) analyzed gene expression changes about cispaltin resistance in A549 NSCLC cells. GSE43249 (GPL-14613) included noncoding RNA expression profiling derived from the cisplatin resistant A549 lung cells. GEO2R, an online analysis tool, analyzed the differentially expressed mRNAs and miRNAs (DEmRNAs and DEmiRNAs). To explore the functional enrichment implication of differentially expressed mRNAs, we used the GO and KEGG pathway analysis. Through miRDB、Targetscan、Starbase、miRWalk, we found targeted miRNAs. The Kaplan-Meier curve method was used to show clinical survival analysis of targeted RNAs (P<0.05). The Starbase database predicted potential lncRNAs mediated targeted miRNAs. Eventually, the novel ceRNA network of lncRNAs, miRNAs, mRNA was constructed by cytoscape3.7.2.Results:118 differentially expressed mRNAs were the basis of the mediated ceRNA network. DAVID and Kaplan-Meier picked out BAX, an apoptosis regulator. Venn Diagram demonstrated 8 miRNAs commomly regulating Bax. Starbase predicted lncRNA XIST mediated miRNAs. Finally, lncRNA XIST maybe a useful biomarker regulating cisplatin resistance in lung cancer cells.Conclusions: LncRNA XIST competitively bound to miRNA 520 in the regulation of cisplatin resistance by BAX , participating apoptosis in the p53 signaling pathway.


2020 ◽  
Author(s):  
Ting-Ting Liu ◽  
Rui Li ◽  
Xiao Liu ◽  
Xi-Jia Zhou ◽  
Chen Huo ◽  
...  

Abstract Background In recent years, LncRNA acts as a member of competing endogenous RNA (ceRNA), playing an important role in drug resistance of lung cancer. The aim of this study was to identify potential biomarkers about cisplatin resistant lung cancer cells using a comprehensive ceRNA network. Methods GSE6410 (GPL-201) analyzed gene expression changes about cispaltin resistance in A549 NSCLC cells. GSE43249 (GPL-14613) included noncoding RNA expression profiling derived from the cisplatin resistant A549 lung cells. GEO2R, an online analysis tool, analyzed the differentially expressed mRNAs and miRNAs (DEmRNAs and DEmiRNAs). To explore the functional enrichment implication of differentially expressed mRNAs, we used the GO and KEGG pathway analysis. Through miRDB、Targetscan、Starbase、miRWalk, we found targeted miRNAs. The Kaplan-Meier curve method was used to show clinical survival analysis of targeted RNAs (P < 0.05). The Starbase database predicted potential lncRNAs mediated targeted miRNAs. Eventually, the novel ceRNA network of lncRNAs, miRNAs, mRNA was constructed by cytoscape3.7.2. Results 118 differentially expressed mRNAs were the basis of the mediated ceRNA network. DAVID and Kaplan-Meier picked out BAX, an apoptosis regulator. Venn Diagram demonstrated 8 miRNAs commomly regulating Bax. Starbase predicted lncRNA XIST mediated miRNAs. Finally, lncRNA XIST maybe a useful biomarker regulating cisplatin resistance in lung cancer cells. Conclusions LncRNA XIST competitively bound to miRNA 520 in the regulation of cisplatin resistance by BAX, participating apoptosis in the p53 signaling pathway.


2020 ◽  
Vol 15 (1) ◽  
pp. 159-172
Author(s):  
Guoning Su ◽  
Zhibing Yan ◽  
Min Deng

AbstractSevoflurane was frequently used as a volatile anesthetic in cancer surgery. However, the potential mechanism of sevoflurane on lung cancer remains largely unclear. In this study, lung cancer cell lines (H446 and H1975) were treated by various concentrations of sevoflurane. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assessment and colony formation assay were performed to detect the cell viability and proliferation, separately. Also, transwell assay or flow cytometry assay was applied as well to evaluate the invasive ability or apoptosis in lung cancer cells, respectively. Western blot assay was employed to detect the protein levels of β-catenin and Wnt5a. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the expression level of prostate cancer-associated transcript 6 (PCAT6) and miR-326 in lung cancer tissues and cells. The target interaction between miR-326 and PCAT6 or Wnt5a was predicted by bioinformatics analysis and verified by the dual-luciferase reporter gene assay. Sevoflurane inhibited the abilities on viability, proliferation, invasion, and activation of Wnt/β-catenin signaling, but promoted apoptosis of H446 and H1975 cells in a dose-dependent manner. The expression of PCAT6 was increased in lung cancer tissues and cells, except for that of miR-326. Besides, sevoflurane could lead to expressed limitation of PCAT6 or improvement of miR-326. This process presented a stepwise manner. Up-regulation of PCAT6 restored the suppression of sevoflurane on abilities of proliferation, invasion, rather than apoptosis, and re-activated the Wnt5a/β-catenin signaling in cells. Moreover, the putative binding sites between miR-326 and PCTA6 or Wnt5a were predicted by starBase v2.0 software online. PCAT6 suppressing effects on cells could be reversed by pre-treatment with miR-326 vector. The promotion of Wnt5a inverted effects led from miR-326 or sevoflurane. Our study indicated that sevoflurane inhibited the proliferation, and invasion, but enhanced the apoptosis in lung cancer cells by regulating the lncRNA PCAT6/miR-326/Wnt5a/β-catenin axis.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


2018 ◽  
Vol 234 (6) ◽  
pp. 9077-9092 ◽  
Author(s):  
Maria Rita Milone ◽  
Rita Lombardi ◽  
Maria Serena Roca ◽  
Francesca Bruzzese ◽  
Laura Addi ◽  
...  

2012 ◽  
Vol 11 (3) ◽  
pp. 604-615 ◽  
Author(s):  
Medhi Wangpaichitr ◽  
Elizabeth J. Sullivan ◽  
George Theodoropoulos ◽  
Chunjing Wu ◽  
Min You ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 963-969
Author(s):  
Wenhong Zheng ◽  
Wenrui Xie ◽  
Lijuan Fu ◽  
Zhengqi Fu

The lung cancer was most deadly tumor in the world and the suvival rate needs to be improved clinically and urgently. The abnormal miR-340 expression is found in several solid tumors. Our study was aimed to explore miR-340’s role in lung cancer. 14 cases of patients with lung cancer was selected to measure miR-340 level by RT-PCR and analyze its correlation with clinical characteristics. The relation between the miR-340 and DICER1 was detected by dual luciferase assay and cell proliferation was measured by MTT assay along with analysis of cell migration and invasive by Scratch-Wound experiment. The miR-340 in lung cancer cells was reduced significantly and DICER1 was predicted to be a potential target of miR-340. DICER1 level was found to be negatively related with miR-340 level. The DICER1 as the direct target gene of miR-340 was conducive to improve miR-340 function through overexpression and knock-out experiment further. Abnormal miR-340 level affected lung cancer cell proliferation and migration as well as MAPK signaling. miR-340 could affect the biological morphology and transformation of physiological function of lung cancer cells mainly through restraining the expression of apoptosis and prompting the cellular proliferation, indicating that it might be a novel target to improve the treatment of lung cancer.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Juze Yang ◽  
Qiongzi Qiu ◽  
Xinyi Qian ◽  
Jiani Yi ◽  
Yiling Jiao ◽  
...  

Abstract Introduction Long noncoding RNAs (lncRNAs) are emerging as key players in the development and progression of cancer. However, the biological role and clinical significance of most lncRNAs in lung carcinogenesis remain unclear. In this study, we identified and explored the role of a novel lncRNA, lung cancer associated transcript 1 (LCAT1), in lung cancer. Methods We predicted and validated LCAT1 from RNA-sequencing (RNA-seq) data of lung cancer tissues. The LCAT1–miR-4715-5p–RAC1 axis was assessed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Signaling pathways altered by LCAT1 knockdown were identified using RNA-seq. Furthermore, the mechanism of LCAT1 was investigated using loss-of-function and gain-of-function assays in vivo and in vitro. Results LCAT1 is an oncogene that is significantly upregulated in lung cancer tissues and associated with poor prognosis. LCAT1 knockdown caused growth arrest and cell invasion in lung cancer cells in vitro, and inhibited tumorigenesis and metastasis in the mouse xenografts. Mechanistically, LCAT1 functions as a competing endogenous RNA for miR-4715-5p, thereby leading to the upregulation of the activity of its endogenous target, Rac family small GTPase 1 (RAC1). Moreover, EHop-016, a small molecule inhibitor of RAC1, as an adjuvant could improve the Taxol monotherapy against lung cancer cells in vitro. Conclusions LCAT1–miR-4715-5p–RAC1/PAK1 axis plays an important role in the progression of lung cancer. Our findings may provide valuable drug targets for treating lung cancer. The novel combination therapy of Taxol and EHop-016 for lung cancer warrants further investigation, especially in lung cancer patients with high LCAT1 expression.


Sign in / Sign up

Export Citation Format

Share Document