scholarly journals Activation of the Hedgehog and Wnt/β-Catenin Signaling Pathways in Basal Cell Carcinoma

2021 ◽  
pp. 506-512
Author(s):  
Tomoaki Takada

In basal cell carcinoma (BCC) tumorigenesis, interaction between Hedgehog (Hh) and Wnt/β-catenin (Wnt) signaling pathways has been investigated, but not completely elucidated. Here, a case of sporadic BCC in an 80-year-old man is presented, and the effectiveness of SMO inhibitors in case of relapse is predicted. The aim of this study was to determine whether the SMO inhibitors can be effective in treating this individual should the tumor recur in the future. Immunohistochemistry (IHC) was performed in a tumor and the adjacent skin tissue from the patient. IHC within the same BCC tissue specimen revealed that Glioma-associated oncogene 1 (GLI1) and Smoothened (SMO) in the Hh signaling pathway and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in the Wnt signaling pathway were overexpressed. Hh and Wnt signaling pathways were activated. These findings suggest that the patient might be resistant to treatment with SMO inhibitors because of the interaction between Hh and Wnt signaling pathways. Overexpression of GLI1 leads to transcriptional activation, making it an attractive molecular target for anticancer therapy owing to the downstream effectors of the cascade.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Garima Sharma ◽  
Ashish Ranjan Sharma ◽  
Eun-Min Seo ◽  
Ju-Suk Nam

The Wnt signaling pathway is mediated by a family of secreted glycoproteins through canonical and noncanonical mechanism. The signaling pathways are regulated by various modulators, which are classified into two classes on the basis of their interaction with either Wnt or its receptors. Secreted frizzled-related proteins (sFRPs) are the member of class that binds to Wnt protein and antagonizes Wnt signaling pathway. The other class consists of Dickkopf (DKK) proteins family that binds to Wnt receptor complex. The present review discusses the disease related association of various polymorphisms in Wnt signaling modulators. Furthermore, this review also highlights that some of the sFRPs and DKKs are unable to act as an antagonist for Wnt signaling pathway and thus their function needs to be explored more extensively.


2019 ◽  
Vol 20 (21) ◽  
pp. 5391 ◽  
Author(s):  
Wörthmüller ◽  
Salicio ◽  
Oberson ◽  
Blum ◽  
Schwaller

Malignant mesothelioma (MM) is an aggressive asbestos-linked neoplasm, characterized by dysregulation of signaling pathways. Due to intrinsic or acquired chemoresistance, MM treatment options remain limited. Calretinin is a Ca2+-binding protein expressed during MM tumorigenesis that activates the FAK signaling pathway, promoting invasion and epithelial-to-mesenchymal transition. Constitutive calretinin downregulation decreases MM cells’ growth and survival, and impairs tumor formation in vivo. In order to evaluate early molecular events occurring during calretinin downregulation, we generated a tightly controlled IPTG-inducible expression system to modulate calretinin levels in vitro. Calretinin downregulation significantly reduced viability and proliferation of MM cells, attenuated FAK signaling and reduced the invasive phenotype of surviving cells. Importantly, surviving cells showed a higher resistance to cisplatin due to increased Wnt signaling. This resistance was abrogated by the Wnt signaling pathway inhibitor 3289-8625. In various MM cell lines and regardless of calretinin expression levels, blocking of FAK signaling activated the Wnt signaling pathway and vice versa. Thus, blocking both pathways had the strongest impact on MM cell proliferation and survival. Chemoresistance mechanisms in MM cells have resulted in a failure of single-agent therapies. Targeting of multiple components of key signaling pathways, including Wnt signaling, might be the future method-of-choice to treat MM.


2021 ◽  
Vol 7 ◽  
Author(s):  
Jing Xie ◽  
Li Huang ◽  
You-Guang Lu ◽  
Da-Li Zheng

Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck tumor. It is a high incidence malignant tumor associated with a low survival rate and limited treatment options. Accumulating conclusions indicate that the Wnt signaling pathway plays a vital role in the pathobiological process of HNSCC. The canonical Wnt/β-catenin signaling pathway affects a variety of cellular progression, enabling tumor cells to maintain and further promote the immature stem-like phenotype, proliferate, prolong survival, and gain invasiveness. Genomic studies of head and neck tumors have shown that although β-catenin is not frequently mutated in HNSCC, its activity is not inhibited by mutations in upstream gene encoding β-catenin, NOTCH1, FAT1, and AJUBA. Genetic defects affect the components of the Wnt pathway in oral squamous cell carcinoma (OSCC) and the epigenetic mechanisms that regulate inhibitors of the Wnt pathway. This paper aims to summarize the groundbreaking discoveries and recent advances involving the Wnt signaling pathway and highlight the relevance of this pathway in head and neck squamous cell cancer, which will help provide new insights into improving the treatment of human HNSCC by interfering with the transcriptional signaling of Wnt.


Sign in / Sign up

Export Citation Format

Share Document