Controlling Morphology and Functions of Cardiac Organoids by Two-Dimensional Geometrical Templates

2022 ◽  
Author(s):  
Plansky Hoang ◽  
Shiyang Sun ◽  
Bearett A. Tarris ◽  
Zhen Ma

Traditionally, tissue-specific organoids are generated as 3D aggregates of stem cells embedded in Matrigel or hydrogels, and the aggregates eventually end up a spherical shape and suspended in the matrix. Lack of geometrical control of organoid formation makes these spherical organoids limited for modeling the tissues with complex shapes. To address this challenge, we developed a new method to generate 3D spatial-organized cardiac organoids from 2D micropatterned hiPSC colonies, instead of directly from 3D stem cell aggregates. This new approach opens the possibility to create cardiac organoids that are templated by 2D non-spherical geometries, which potentially provides us a deeper understanding of biophysical controls on developmental organogenesis. Here, we designed 2D geometrical templates with quadrilateral shapes and pentagram shapes that had same total area but different geometrical shapes. Using this templated substrate, we grew cardiac organoids from human induced pluripotent stem cells (hiPSCs) and collected a series of parameters to characterize morphological and functional properties of the cardiac organoids. In quadrilateral templates, we found that increasing the aspect ratio impaired cardiac tissue 3D self-assembly, but the elongated geometry improved the cardiac contractile functions. However, in pentagram templates, cardiac organoid structure and function were optimized with a specific geometry of an ideal star shape. This study will shed a light on “organogenesis-by-design” by increasing the intricacy of starting templates from external geometrical cues to improve the organoid morphogenesis and functionality.

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Hidetoshi Masumoto ◽  
Tadashi Ikeda ◽  
Tatsuya Shimizu ◽  
Teruo Okano ◽  
Ryuzo Sakata ◽  
...  

BACKGROUNDS: To realize cardiac regeneration with human induced pluripotent stem cells (hiPSCs), efficient differentiation from hiPSCs to defined cardiac cell populations (cardiomyocytes [CMs]/ endothelial cells [ECs]/ vascular mural cells [MCs]), and transplantation technique for fair engraftment are required. Recently, we reported that mouse ES cell-derived cardiac tissue sheet transplantation to rat myocardial infarction (MI) model ameliorated cardiac function after MI (Stem Cells, in press). Here we tried to extend this technique to hiPSCs. METHODS & RESULTS: We have reported an efficient cardiomyocyte differentiation protocol based on a monolayer culture (PLoS One, 2011), in which cardiac troponin-T (cTnT)-positive CMs robustly appeared with 50-80% efficiency. In this study, we further modified the protocol to induce vascular cells (ECs/MCs) together with CMs by vascular endothelial cell growth factor supplementation, resulted in proportional differentiation of cTnT+-CMs (62.7±11.7% of total cells), VE-cadherin+-ECs (7.8±4.9%) and PDGFRb+-MCs (18.2±11.0%) at differentiation day 15 (n=12). Then, these cells were transferred onto temperature-responsive culture dishes (UpCell dishes; CellSeed, Tokyo, Japan) to form cardiac tissue sheets including defined cardiac populations. After 4 days of culture, we successfully collected self-pulsating cardiac tissue sheets with 7.0×10 5 ±2.3 (n=12) of cells consisted of CMs (46.9±15.9% of total cells), ECs (4.1±3.7%), and MCs (22.5±15.7%). Three-layered hiPSC-derived cardiac sheets were transplanted to a MI model of athymic rat heart one week after MI. In transplantation group, echocardiogram showed a significant improvement of systolic function of left ventricle (fractional shortening: 22.6±5.0 vs 36.5±8.0%, p<0.001, n=20) and a decrease in akinetic length (20.8±9.7 vs 2.5±7.7%, p<0.001, n=20) (pre-treatment vs 4weeks after transplantation). We also succeeded in generation of larger sheets (1.6 inch diameter) with the same method. CONCLUTIONS: Transplantation of hiPSC-derived cardiac tissue sheets significantly ameliorates cardiac dysfunction after MI. Thus, we developed a valuable technological basis for hiPSC-based cardiac cell therapy.


2017 ◽  
Vol 5 (8) ◽  
pp. 1567-1578 ◽  
Author(s):  
Maureen Wanjare ◽  
Luqia Hou ◽  
Karina H. Nakayama ◽  
Joseph J. Kim ◽  
Nicholas P. Mezak ◽  
...  

Engineering of myocardial tissue constructs is a promising approach for treatment of coronary heart disease.


2020 ◽  
Author(s):  
Mark A. Skylar-Scott ◽  
Jeremy Y. Huang ◽  
Aric Lu ◽  
Alex H.M. Ng ◽  
Tomoya Duenki ◽  
...  

AbstractSimultaneous differentiation of human induced pluripotent stem cells (hiPSCs) into divergent cell types offers a pathway to achieving tailorable cellular complexity, patterned architecture, and function in engineered human organoids and tissues. Recent transcription factor (TF) overexpression protocols typically produce only one cell type of interest rather than the multitude of cell types and structural organization found in native human tissues. Here, we report an orthogonal differentiation platform for genomically programming stem cells, organoids and bioprinted tissues with controlled composition and organization. To demonstrate this platform, we orthogonally differentiated endothelial cells and neurons from hiPSCs in a one-pot system containing neural stem cell-specifying media. By aggregating inducible-TF and wildtype hiPSCs into pooled and multicore-shell embryoid bodies, we produced vascularized and patterned cortical organoids within days. Using multimaterial 3D bioprinting, we patterned 3D neural tissues from densely cellular, matrix-free stem cell inks that were orthogonally differentiated on demand into distinct layered regions composed of neural stem cells, endothelium, and neurons, respectively. Given the high proliferative capacity and patient-specificity of hiPSCs, our platform provides a facile route for programming cells and multicellular tissues for drug screening and therapeutic applications.


2017 ◽  
Vol 66 (01) ◽  
pp. 053-062 ◽  
Author(s):  
Ana Duran ◽  
Olivia Reidell ◽  
Harald Stachelscheid ◽  
Kristin Klose ◽  
Manfred Gossen ◽  
...  

AbstractFor more than 20 years, tremendous efforts have been made to develop cell-based therapies for treatment of heart failure. However, the results of clinical trials using somatic, nonpluripotent stem or progenitor cells have been largely disappointing in both cardiology and cardiac surgery scenarios. Surgical groups were among the pioneers of experimental and clinical myocyte transplantation (“cellular cardiomyoplasty”), but little translational progress was made prior to the development of cellular reprogramming for creation of induced pluripotent stem cells (iPSC). Ever since, protocols have been developed which allow for the derivation of large numbers of autologous cardiomyocytes (CMs) from patient-specific iPSC, moving translational research closer toward clinical pilot trials. However, compared with somatic cell therapy, the technology required for safe and efficacious pluripotent stem cell (PSC)-based therapies is extremely complex and requires tremendous resources and close interactions between basic scientists and clinicians. This review summarizes PSC sources, strategies to derive CMs, current cardiac tissue engineering approaches, concerns regarding immunogenicity and cellular maturity, and highlights the contributions made by surgical groups.


2015 ◽  
Vol 24 (23) ◽  
pp. 2740-2745 ◽  
Author(s):  
Bin Jiang ◽  
Michele Jen ◽  
Louisiane Perrin ◽  
Jason A. Wertheim ◽  
Guillermo A. Ameer

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1613
Author(s):  
Sarama Saha ◽  
Partha Roy ◽  
Cynthia Corbitt ◽  
Sham S. Kakar

Infertility creates an immense impact on the psychosocial wellbeing of affected couples, leading to poor quality of life. Infertility is now considered to be a global health issue affecting approximately 15% of couples worldwide. It may arise from factors related to the male (30%), including varicocele, undescended testes, testicular cancer, and azoospermia; the female (30%), including premature ovarian failure and uterine disorders; or both partners (30%). With the recent advancement in assisted reproduction technology (ART), many affected couples (80%) could find a solution. However, a substantial number of couples cannot conceive even after ART. Stem cells are now increasingly being investigated as promising alternative therapeutics in translational research of regenerative medicine. Tremendous headway has been made to understand the biology and function of stem cells. Considering the minimum ethical concern and easily available abundant resources, extensive research is being conducted on induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSC) for their potential application in reproductive medicine, especially in cases of infertility resulting from azoospermia and premature ovarian insufficiency. However, most of these investigations have been carried out in animal models. Evolutionary divergence observed in pluripotency among animals and humans requires caution when extrapolating the data obtained from murine models to safely apply them to clinical applications in humans. Hence, more clinical trials based on larger populations need to be carried out to investigate the relevance of stem cell therapy, including its safety and efficacy, in translational infertility medicine.


2021 ◽  
Author(s):  
Paul Frazel ◽  
David Labib ◽  
Ran Brosh ◽  
Valentina Fossati ◽  
Jef D Boeke ◽  
...  

Central nervous system macroglia (astrocytes and oligodendrocytes) are required for normal brain development and function, and are among the last cells to emerge during neurodevelopment. Many questions remain about their emergence in the brain and spinal cord, including how early glial fates are specified during development or differen- tiation, and similarly when subtypes of glia are specified. Here, we used single-cell RNA sequencing (scRNAseq) to analyze ~90,000 cells across multiple timepoints during the differentiation of astrocytes and oligodendrocytes from human induced pluripotent stem cells and mouse embryonic stem cells. Using time series analysis of gene expres- sion, we uncovered multiple genes involved in fate specification of glial subtypes in both species. We examined gene expression changes during intermediate states of glial specification, and were able to identify genes that were correlated with the choice between neuron versus glia in both species. Using our scRNAseq data we optimized previous mouse astrocyte differentiation protocols by highlighting and removing non-required transition states and decreasing the overall protocol from 3 weeks to less than 12 days. Our data will be useful for researchers interested in optimizing glial differentiations in either species, and provide a window into human glial differentiation, which is difficult to study given its lateness in development.


Author(s):  
Angela Di Baldassarre ◽  
Elisa Cimetta ◽  
Sveva Bollini ◽  
Giulia Gaggi ◽  
Barbara Ghinassi

Human induced pluripotent stem cells (hiPSCs) are reprogrammed cells that have hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived cardiac myocytes (CMs) recapitulate phenotypic differences caused by genetic variations, making them human attractive disease models and useful tools for drug discovery and toxicology testing. In addition, hiPSCs can be used as source cells for cardiac regeneration in animal models. Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that underlies the significant improvement of the induced reprogramming of somatic cells to CMs. We also cover the phenotypic characteristics of the hiPSCs derived CMs, their ability to rescue injured CMs through paracrine effects, the novel approaches in tissue engineering for hiPSC-derived cardiac tissue generation, and finally, their potential use in biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document