scholarly journals BCH codes in UFMC: A new contender candidate for 5G communication systems

2021 ◽  
Vol 10 (2) ◽  
pp. 904-910
Author(s):  
Ghasan Ali Hussain ◽  
Lukman Audah

Nowadays, fifth generation (5G) wireless network is considered one of the most important research topics in wireless industry and it will be substituting with fourth generation (4G) in several aspects. Although the robustness of orthogonal frequency division multiplexing (OFDM) system against channel delays which is the reason behind using it in LTE/LTE Advanced however, it is suffering from high peak to average power ration (PAPR) and out of band side lobes. So, universal filtered multi-carrier (UFMC) technique is considered a new modulation scheme for 5G wireless communication system to overcome on the common OFDM demits. In contrast, to achieve reliable data transmission in digital communication systems, using error correcting codes are considered an essential over noisy channels. In this paper, BCH code has been used for UFMC system over AWGN. The results showed that using BCH codes in UFMC contributed in enhancing BER performance while could decreasing both of PAPR and OOBE values better than conventional OFDM system.

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1466
Author(s):  
Imran Baig ◽  
Umer Farooq ◽  
Najam Ul Hasan ◽  
Manaf Zghaibeh ◽  
Varun Jeoti

The next generation communication network (NGCN) is expected to provide higher spectral efficiency, low latency, large throughput and massive machine-to-machine type communications. In this regard, the design of the multi-carrier waveform (MCW) is posing a major research problem for the NGCN. To overcome the stated problem, a lot of state-of-the-art work exists that proposes various MCW alternative to the standard orthogonal frequency division multiplexing (OFDM) waveform. It is true that OFDM was used in a number of real-time communication systems of fourth generation (4G) networks. However, their use in the upcoming fifth generation (5G) network is not very feasible. This is because of the strict requirements of 5G communication systems, which also extend beyond 5G systems; hence rendering the use of OFDM infeasible for newer communication standards. To satisfy the requirements of upcoming communication networks, there is a dire need for MCWs with better flexibility. In this regard, a precoding-based MCW has been proposed. The proposed MCW fulfills the requirements of the NGCN in terms of low peak-to-average power ratio (PAPR), high spectral efficiency and throughput. The MCW proposed in this work uses power-domain multiplexing such as non-orthogonal multiple access (NOMA) and phase rotation by using the selective mapping (SLM) and generalized chirp-like (GCL) precoding of the input signal to the universal filtered multi-carriers (UFMC) modulations. Statistical analysis of the PAPR is presented by using the complementary cumulative distribution function (CCDF). The MATLAB® simulations have been carried out to implement the CCDF of PAPR and results show that a PAPR gain of 5.4 dB is obtained when the proposed waveform is compared with the standard NOMA-UFMC waveform at clip rate of 10−3, using 4-QAM.


Author(s):  
Frank Andrés Eras ◽  
Italo Alexander Carreño ◽  
Thomás Borja ◽  
Diego Javier Reinoso ◽  
Luis Urquiza-Aguiar ◽  
...  

Orthogonal Frequency Division Multiplexing (OFDM) is a technique widely used in today's wireless communication systems due to its ability to combat the effects of multi-path in the signal. However, one of the main limitations of the use of OFDM is its high Peak-to-Average Power Ratio (PAPR), which reduces the efficiency of the OFDM system. The effects of PAPR can produce both out-of-band and in-band radiation, which degrades the signal by increasing the bit error rate (BER), this occurs in both baseband and bandpass sginals. In this document the effect of the PAPR in a OFDM passband signal is analyzed considering the implementation of a High Power Amplifier (HPA) and the Simple Amplitude Predistortion-Orthogonal Pilot Sequences (OPS-SAP) scheme to reduce the PAPR.


2010 ◽  
Vol 44 (4) ◽  
pp. 30-41 ◽  
Author(s):  
Guillem Rojo ◽  
Milica Stojanovic

AbstractOrthogonal frequency division multiplexing (OFDM) is an appealing modulation scheme for high-rate underwater acoustic communications that are challenged by multipath propagation. However, it has a drawback in the large peak-to-average power ratio (PAR). Techniques for PAR reduction have been extensively studied for radio communication systems. Although these techniques are applicable to acoustic systems, we take a different approach that aims to capitalize on the fundamental differences between the acoustic and the radio systems; namely, the fact that acoustic transmissions are inherently band limited. We extend the tone reservation technique to the out-of-band carriers and design efficient methods for constructing OFDM signals with lower PAR. Two approaches are investigated, one based on a gradient algorithm and another that uses random sequences. Simulation results show that our techniques can provide PAR reduction without the loss in data rate.


2021 ◽  
Vol 9 ◽  
Author(s):  
Balram Damodhar Timande ◽  
◽  
Dr. Manoj Kumar Nigam ◽  

The ‘Orthogonal frequency division multiplexing (OFDM)’ is a well-accepted and effective technology employed today and in future wireless communication systems. The combinations of OFDM and ‘multiple-input multiple-output (MIMO’) offer high quality of services and better throughput. The multicarrier OFDM system experiences a high ‘peak-to-average power ratio (PAPR’), which is the major issue in the OFDM scheme and must be truncated to achieve trustworthy communication. Due to high PAPR in a signal to be transmitted, the power amplifier in the transmitter section enters into saturation region and amplifies the signal nonlinearly, resulting in loss of orthogonality and ultimately in ‘inter-carrier interference (ICI)’. In this article, the 'iterative clipping and filtering (ICF)' method is proposed to minimize the PAPR in the OFDM system. The simulation is carried out using MATLAB (version 2014b). The result of the proposed ICF method and the ‘selective mapping (SLM)’ scheme is analyzed and compared. From the analysis, it is shown that the proposed ICF technique is more suitable for minimizing the PAPR effectively without affecting ‘bit error rates (BER)’ much and the simplicity of the system. The simulation result of the proposed ICF scheme using ‘Quadrature Phase Shift Keying (QPSK)’, FFT size of 128, and clipping and filtering level up to 6 shows that the proposed ICF scheme for clipping level of 6 reduces PAPR to 5dB. Also, the BER is minimized at the level of 3×10−5 at 12 dB SNR.


2021 ◽  
Author(s):  
Sneha Singhal ◽  
Dheeraj Kumar Sharma

Modulation scheme, orthogonal frequency division multiplexing (OFDM) uses multiple carriers to communicate and transmit data. It is used widely in wireless communication due to its numerous advantages. OFDM modulation is very advantageous as it reduces inter symbol interference, provides high data rate and it is not affected by narrow band effect. To operate OFDM effectively, its high value of peak to average power ratio should be reduced. In OFDM, power amplifier should be linear and accommodate amplitude variations to work efficiently. The high peak to average power ratio affects the performance of power amplifier.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Zsolt Kollár ◽  
Péter Horváth

Physical layers of communication systems using Filter Bank Multicarrier (FBMC) as a modulation scheme provide low out-of-band leakage but suffer from the large Peak-to-Average Power Ratio (PAPR) of the transmitted signal. Two special FBMC schemes are investigated in this paper: the Orthogonal Frequency Division Multiplexing (OFDM) and the Staggered Multitone (SMT). To reduce the PAPR of the signal, time domain clipping is applied in both schemes. If the clipping is not compensated, the system performance is severely affected. To avoid this degradation, an iterative noise cancelation technique, Bussgang Noise Cancelation (BNC), is applied in the receiver. It is shown that clipping can be a good means for reducing the PAPR, especially for the SMT scheme. A novel modified BNC receiver is presented for SMT. It is shown how this technique can be implemented in real-life applications where special requirements must be met regarding the spectral characteristics of the transmitted signal.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 487 ◽  
Author(s):  
Kommabatla Mahender ◽  
Tipparti Anil Kumar ◽  
K S Ramesh

This paper describes the aspects of multiple access for emerging (5G) Wireless Communication Systems. Orthogonal Frequency Division Multiplexing (OFDM) is best suited for fourth generation (4G) but it suffers from the problem of high Peak to Average Power Ratio (PAPR) & Side band leakage. Single carrier frequency division multiple access (SC-FDMA) has worked like an alternative to OFDMA only in the uplink process and PAPR was reduced. OFDM based 4G network is not capable of supporting diverse applications and these applications can be implemented by 5G.  High traffic requirements of 5G can be evaluated by using multiple access schemes, namely filter-bank multi-carrier (FBMC), universal-filtered multi-carrier (UFMC), generalized frequency-division multiplexing (GFDM). Comparison of PAPR reduction is done based on Complementary Cumulative Distribution Function (CCDF), for various multiple access 5G waveforms.  


2016 ◽  
Vol 4 (1) ◽  
pp. 150-163 ◽  
Author(s):  
Rizky Pratama Hudhajanto ◽  
I Gede Puja Astawa ◽  
Amang Sudarsono

Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) is the most used wireless transmission scheme in the world. However, its security is the interesting problem to discuss if we want to use this scheme to transmit a sensitive data, such as in the military and commercial communication systems. In this paper, we propose a new method to increase the security of MIMO-OFDM system using the change of location of fake subcarrier. The fake subcarriers’ location is generated per packet of data using Pseudo Random sequence generator. The simulation results show that the proposed scheme does not decrease the performance of conventional MIMO-OFDM. The attacker or eavesdropper gets worse Bit Error Rate (BER) than the legal receiver compared to the conventional MIMO-OFDM system.


In this paper, Discrete Wavelet Transform (DWT) Orthogonal Frequency Division Multiplexing (OFDM) system is compared with Discrete Cosine Transform (DCT) and Discrete Fourier Transform (DFT) OFDM systems. The channel noise is modelled with A white Gaussian Model (AWGN), the fading is the impairment in the channel and modelled by Rayleigh fading which is frequency selective fading channel and flat fading channel. The comparisons of Peak to Average Power Ratio (PAPR) and Bit Error Rate (BER) are made using modulation techniques such as Differential Amplitude and Phase Modulation (DAPM), Quadrature Amplitude Modulation (QAM) and Pulse Amplitude Modulation (PAM). Simulation results shows that PAPR is 4.497 dB for DWT-DAPM combination, 4.684 dB for DWT-QAM combination and 6.211 dB for DWT- PAM combination at 10-3 Complementary Cumulative Distributive Function (CCDF).The performance Analysis with the combination of DFT, DCT with DAPM, QAM and PAM are also compared. The BER is 0.01816, 0.01806 at 20 dB SNR in frequency selective channel, flat fading channel for DWT-DAPM and for DWT- QAM, AWGN channel BER is 0.01765 at 20dB SNR.


Author(s):  
Heba Abdul-Jaleel Al-Asady ◽  
Hassan Falah Fakhruldeen ◽  
Mustafa Qahtan Alsudani

<p>Orthogonal frequency division multiplexing (OFDM) is a transmission system that uses multiple orthogonal carriers that are sent out at the same time. OFDM is a technique for mobile and wireless communication that has high-efficient frequency utilization, high data-rate transmission, simple and efficient implementation using the fast Fourier transform (FFT) and the inverse fast Fourier transform (IFFT), and reduces inter symbol interference (ISI) by inserting cyclic prefix (CP). One of the most important approaches in an OFDM system is channel estimation. In this paper, the orthogonal frequency division multiplexing system with the Rayleigh channel module is analyzed for different areas. The proposed approach used large numbers of subcarriers to transmit the signals over 64-QAM modulation with pilot add channel estimation. The accuracy of the OFDM system is shown in the measuring of the relationships of peak power to the noise ratio and bit error rate.</p>


Sign in / Sign up

Export Citation Format

Share Document