scholarly journals Assessing mangrove deforestation using pixel-based image: a machine learning approach

2021 ◽  
Vol 10 (6) ◽  
pp. 3178-3190
Author(s):  
Ahmad Yahya Dawod ◽  
Mohammed Ali Sharafuddin

Mangrove is one of the most productive global forest ecosystems and unique in linking terrestrial and marine environment. This study aims to clarify and understand artificial intelligence (AI) adoption in remote sensing mangrove forests. The performance of machine learning algorithms such as random forest (RF), support vector machine (SVM), decision tree (DT), and object-based nearest neighbors (NN) algorithms were used in this study to automatically classify mangrove forests using orthophotography and applying an object-based approach to examine three features (tree cover loss, above-ground carbon dioxide (CO2) emissions, and above-ground biomass loss). SVM with a radial basis function was used to classify the remainder of the images, resulting in an overall accuracy of 96.83%. Precision and recall reached 93.33 and 96%, respectively. RF performed better than other algorithms where there is no orthophotography. 

2021 ◽  
Author(s):  
Polash Banerjee

Abstract Wildfires in limited extent and intensity can be a boon for the forest ecosystem. However, recent episodes of wildfires of 2019 in Australia and Brazil are sad reminders of their heavy ecological and economical costs. Understanding the role of environmental factors in the likelihood of wildfires in a spatial context would be instrumental in mitigating it. In this study, 14 environmental features encompassing meteorological, topographical, ecological, in situ and anthropogenic factors have been considered for preparing the wildfire likelihood map of Sikkim Himalaya. A comparative study on the efficiency of machine learning methods like Generalized Linear Model (GLM), Support Vector Machine (SVM), Random Forest (RF) and Gradient Boosting Model (GBM) has been performed to identify the best performing algorithm in wildfire prediction. The study indicates that all the machine learning methods are good at predicting wildfires. However, RF has outperformed, followed by GBM in the prediction. Also, environmental features like average temperature, average wind speed, proximity to roadways and tree cover percentage are the most important determinants of wildfires in Sikkim Himalaya. This study can be considered as a decision support tool for preparedness, efficient resource allocation and sensitization of people towards mitigation of wildfires in Sikkim.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241239
Author(s):  
Kai On Wong ◽  
Osmar R. Zaïane ◽  
Faith G. Davis ◽  
Yutaka Yasui

Background Canada is an ethnically-diverse country, yet its lack of ethnicity information in many large databases impedes effective population research and interventions. Automated ethnicity classification using machine learning has shown potential to address this data gap but its performance in Canada is largely unknown. This study conducted a large-scale machine learning framework to predict ethnicity using a novel set of name and census location features. Methods Using census 1901, the multiclass and binary class classification machine learning pipelines were developed. The 13 ethnic categories examined were Aboriginal (First Nations, Métis, Inuit, and all-combined)), Chinese, English, French, Irish, Italian, Japanese, Russian, Scottish, and others. Machine learning algorithms included regularized logistic regression, C-support vector, and naïve Bayes classifiers. Name features consisted of the entire name string, substrings, double-metaphones, and various name-entity patterns, while location features consisted of the entire location string and substrings of province, district, and subdistrict. Predictive performance metrics included sensitivity, specificity, positive predictive value, negative predictive value, F1, Area Under the Curve for Receiver Operating Characteristic curve, and accuracy. Results The census had 4,812,958 unique individuals. For multiclass classification, the highest performance achieved was 76% F1 and 91% accuracy. For binary classifications for Chinese, French, Italian, Japanese, Russian, and others, the F1 ranged 68–95% (median 87%). The lower performance for English, Irish, and Scottish (F1 ranged 63–67%) was likely due to their shared cultural and linguistic heritage. Adding census location features to the name-based models strongly improved the prediction in Aboriginal classification (F1 increased from 50% to 84%). Conclusions The automated machine learning approach using only name and census location features can predict the ethnicity of Canadians with varying performance by specific ethnic categories.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 728 ◽  
Author(s):  
Lijuan Yan ◽  
Yanshen Liu

Student performance prediction has become a hot research topic. Most of the existing prediction models are built by a machine learning method. They are interested in prediction accuracy but pay less attention to interpretability. We propose a stacking ensemble model to predict and analyze student performance in academic competition. In this model, student performance is classified into two symmetrical categorical classes. To improve accuracy, three machine learning algorithms, including support vector machine (SVM), random forest, and AdaBoost are established in the first level and then integrated by logistic regression via stacking. A feature importance analysis was applied to identify important variables. The experimental data were collected from four academic years in Hankou University. According to comparative studies on five evaluation metrics (precision, recall, F1, error, and area   under   the   receiver   operating   characteristic   curve ( AUC ) in this analysis, the proposed model generally performs better than compared models. The important variables identified from the analysis are interpretable, they can be used as guidance to select potential students.


Author(s):  
Marco A. Alvarez ◽  
SeungJin Lim

Current search engines impose an overhead to motivated students and Internet users who employ the Web as a valuable resource for education. The user, searching for good educational materials for a technical subject, often spends extra time to filter irrelevant pages or ends up with commercial advertisements. It would be ideal if, given a technical subject by user who is educationally motivated, suitable materials with respect to the given subject are automatically identified by an affordable machine processing of the recommendation set returned by a search engine for the subject. In this scenario, the user can save a significant amount of time in filtering out less useful Web pages, and subsequently the user’s learning goal on the subject can be achieved more efficiently without clicking through numerous pages. This type of convenient learning is called One-Stop Learning (OSL). In this paper, the contributions made by Lim and Ko in (Lim and Ko, 2006) for OSL are redefined and modeled using machine learning algorithms. Four selected supervised learning algorithms: Support Vector Machine (SVM), AdaBoost, Naive Bayes and Neural Networks are evaluated using the same data used in (Lim and Ko, 2006). The results presented in this paper are promising, where the highest precision (98.9%) and overall accuracy (96.7%) obtained by using SVM is superior to the results presented by Lim and Ko. Furthermore, the machine learning approach presented here, demonstrates that the small set of features used to represent each Web page yields a good solution for the OSL problem.


Author(s):  
Ganesh K. Shinde

Abstract: Sentiment Analysis has improvement in online shopping platforms, scientific surveys from political polls, business intelligence, etc. In this we trying to analyse the twitter posts about Hashtag like #MakeinIndia using Machine Learning approach. By doing opinion mining in a specific area, it is possible to identify the effect of area information in sentiment analysis. We put forth a feature vector for classifying the tweets as positive, negative and neutral. After that applied machine learning algorithms namely: MaxEnt and SVM. We utilised Unigram, Bigram and Trigram Features to generate a set of features to train a linear MaxEnt and SVM classifiers. In the end we have measured the performance of classifier in terms of overall accuracy. Keywords: Sentiment analysis, support vector machine, maximum entropy, N-gram, Machine Learning


Author(s):  
Erick Omuya ◽  
George Okeyo ◽  
Michael Kimwele

Social media has been embraced by different people as a convenient and official medium of communication. People write messages and attach images and videos on Twitter, Facebook and other social media which they share. Social media therefore generates a lot of data that is rich in sentiments from these updates. Sentiment analysis has been used to determine opinions of clients, for instance, relating to a particular product or company. Knowledge based approach and Machine learning approach are among the strategies that have been used to analyze these sentiments. The performance of sentiment analysis is however distorted by noise, the curse of dimensionality, the data domains and size of data used for training and testing. This research aims at developing a model for sentiment analysis in which dimensionality reduction and the use of different parts of speech improves sentiment analysis performance. It uses natural language processing for filtering, storing and performing sentiment analysis on the data from social media. The model is tested using Naïve Bayes, Support Vector Machines and K-Nearest neighbor machine learning algorithms and its performance compared with that of two other Sentiment Analysis models. Experimental results show that the model improves sentiment analysis performance using machine learning techniques.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1130
Author(s):  
Jan Vrba ◽  
Matous Cejnek ◽  
Jakub Steinbach ◽  
Zuzana Krbcova

This study proposes a fully automated gearbox fault diagnosis approach that does not require knowledge about the specific gearbox construction and its load. The proposed approach is based on evaluating an adaptive filter’s prediction error. The obtained prediction error’s standard deviation is further processed with a support-vector machine to classify the gearbox’s condition. The proposed method was cross-validated on a public dataset, segmented into 1760 test samples, against two other reference methods. The accuracy achieved by the proposed method was better than the accuracies of the reference methods. The accuracy of the proposed method was on average 9% higher compared to both reference methods for different support vector settings.


2018 ◽  
Vol 10 (9) ◽  
pp. 1419 ◽  
Author(s):  
Mathias Wessel ◽  
Melanie Brandmeier ◽  
Dirk Tiede

We use freely available Sentinel-2 data and forest inventory data to evaluate the potential of different machine-learning approaches to classify tree species in two forest regions in Bavaria, Germany. Atmospheric correction was applied to the level 1C data, resulting in true surface reflectance or bottom of atmosphere (BOA) output. We developed a semiautomatic workflow for the classification of deciduous (mainly spruce trees), beech and oak trees by evaluating different classification algorithms (object- and pixel-based) in an architecture optimized for distributed processing. A hierarchical approach was used to evaluate different band combinations and algorithms (Support Vector Machines (SVM) and Random Forest (RF)) for the separation of broad-leaved vs. coniferous trees. The Ebersberger forest was the main project region and the Freisinger forest was used in a transferability study. Accuracy assessment and training of the algorithms was based on inventory data, validation was conducted using an independent dataset. A confusion matrix, with User´s and Producer´s Accuracies, as well as Overall Accuracies, was created for all analyses. In total, we tested 16 different classification setups for coniferous vs. broad-leaved trees, achieving the best performance of 97% for an object-based multitemporal SVM approach using only band 8 from three scenes (May, August and September). For the separation of beech and oak trees we evaluated 54 different setups, the best result achieved an accuracy of 91% for an object-based, SVM, multitemporal approach using bands 8, 2 and 3 of the May scene for segmentation and all principal components of the August scene for classification. The transferability of the model was tested for the Freisinger forest and showed similar results. This project points out that Sentinel-2 had only marginally worse results than comparable commercial high-resolution satellite sensors and is well-suited for forest analysis on a tree-stand level.


2021 ◽  
Vol 309 ◽  
pp. 01042
Author(s):  
L. Chandrika ◽  
K. Madhavi ◽  
B. Sindhuja ◽  
M. Arshi

Prediction of a cardiovascular diseases has always a tedious challenge for doctors and medical practitioners. Most of the practitioners and hospital staff offers expensive medication, care and surgeries to treat the cardiovascular patients. At early-stage of prediction of heart-oriented problems will be giving a chance of survival by taking necessary precautions. Over the years there are different types of methodologies were proposed to predict the cardiovascular diseases one of the best methodologies is a Machine learning approach. These years many scientific advancements take place in the Artificial Intelligence, Machine learning, and Deep learning which gives an extra push up to help and implement the path in the field of medical image processing and medical data analysis. By using the enormous dataset from various medical experts used to help the researchers to predict the coronary problems prior to happening. Many researchers have tried and implemented different machine learning algorithms to automate the prediction analysis using the enormous number of datasets. There are numerous algorithms and procedures to predict the cardiovascular diseases and accessible to be specific Classification methods including Artificial Neural Networks (AI), Decision tree (DT), Support vector machine (SVM), Genetic algorithm (GA), Neural network (NN), Naive Bayes (NB) and Clustering algorithms like K-NN. A few examinations have been done for creating expectation models utilizing singular procedures and additionally concatenating at least two strategies. This paper gives a speedy and simple survey and knowledge of approachable prediction models using different researchers work from 2004 to 2019. The examination indicates the precision of individual experiments done by various researchers.


2021 ◽  
Vol 9 (4) ◽  
pp. 376 ◽  
Author(s):  
Yunfei Yang ◽  
Haiwen Tu ◽  
Lei Song ◽  
Lin Chen ◽  
De Xie ◽  
...  

Resistance is one of the important performance indicators of ships. In this paper, a prediction method based on the Radial Basis Function neural network (RBFNN) is proposed to predict the resistance of a 13500 transmission extension unit (13500TEU) container ship at different drafts. The predicted draft state in the known range is called interpolation prediction; otherwise, it is extrapolation prediction. First, ship features are extracted to make the resistance Rt prediction. The resistance prediction results show that the performance of the RBFNN is significantly better than the other four machine learning models, backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost). Then, the ship data is processed in a dimensionless manner, and the models mentioned above are used to predict the total resistance coefficient Ct of the container ship. The prediction results show that the RBFNN prediction model still performs well. Good results can be obtained by RBFNN in interpolation prediction, even when using part of dimensionless features. Finally, the accuracy of the prediction method based on RBFNN is greatly improved compared with the modified admiralty coefficient.


Sign in / Sign up

Export Citation Format

Share Document