scholarly journals An effective transmit packet coding with trust-based relay nodes in VANETs

2020 ◽  
Vol 9 (2) ◽  
pp. 685-697
Author(s):  
Omar A. Hammood ◽  
Mohd Nizam Mohmad Kahar ◽  
Waleed A. Hammood ◽  
Raed Abdulkareem Hasan ◽  
Mostafa Abdulghfoor Mohammed ◽  
...  

Vehicular ad-hoc networks (VANETs) are characterized by limited network resources such as limited bandwidth and battery capacity. Hence, it is necessary that unnecessary use of network resources (such as unnecessary packet transfers) is reduced in such networks so that the available power can be conserved for efficient multicast communications. In this paper, we have presented a Transmit Packet Coding (TPC) Network Coding in VANET to ensure reliable and efficient multicasting. With network coding, the number of transmitted packets over the network can be reduced, ensuring efficient utilization of network devices and resources. Here, the trust-based graph optimization is performed using Cuckoo search algorithm to select the secure relay nodes. The experimental results showed the superiority of the presented approach compared to the existing techniques in terms of throughput, latency, hop delay, packet delivery ratio, network decoder outage probability, and block error rate.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3464
Author(s):  
Ramahlapane Lerato Moila ◽  
Mthulisi Velempini

A cognitive radio ad hoc network (CRAHN) is a mobile network that can communicate without any form of centralized infrastructure. The nodes can learn about the environment and make routing decisions. Furthermore, distributed computing, spectrum mobility, and the Internet of Things have created large data sets, which require more spectrum for data transmission. Unfortunately, the spectrum is a scarce resource that underutilized by licensed users, while unlicensed users are overcrowding the free spectrum. The CRAHNs technology has emerged as a promising solution to the underutilization of the spectrum. The focus of this study is to improve the effectiveness and energy consumption of routing in order to address the routing problem of CRAHNs through the implementation of the optimized cuckoo search algorithm. In CRAHNs, the node and spectrum mobility cause some frequent link breakages within the network, which degrades the performance of the routing protocols. This requires a routing solution to this routing problem. The proposed scheme was implemented in NS2 installed in Linux operating system, with a cognitive radio cognitive network (CRCN) patch. From the experimental results, we observed that the proposed OCS-AODV scheme outperformed CS-DSDV and ACO-AODV schemes. It obtained at least 3.87% packet delivery ratio and 2.56% and lower packets lost. The scheme enabled the mobile nodes to adjust accordingly to minimize energy consumption. If not busy, they switch to an idle state to save battery power.


Sensor Review ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 218-232 ◽  
Author(s):  
Rama Rao A. ◽  
Satyananda Reddy ◽  
Valli Kumari V.

Purpose Multimedia applications such as digital audio and video have stringent quality of service (QoS) requirement in mobile ad hoc network. To support wide range of QoS, complex routing protocols with multiple QoS constraints are necessary. In QoS routing, the basic problem is to find a path that satisfies multiple QoS constraints. Moreover, mobility, congestion and packet loss in dynamic topology of network also leads to QoS performance degradation of protocol. Design/methodology/approach In this paper, the authors proposed a multi-path selection scheme for QoS aware routing in mobile ad hoc network based on fractional cuckoo search algorithm (FCS-MQARP). Here, multiple QoS constraints energy, link life time, distance and delay are considered for path selection. Findings The experimentation of proposed FCS-MQARP is performed over existing QoS aware routing protocols AOMDV, MMQARP, CS-MQARP using measures such as normalized delay, energy and throughput. The extensive simulation study of the proposed FCS-based multipath selection shows that the proposed QoS aware routing protocol performs better than the existing routing protocol with maximal energy of 99.1501 and minimal delay of 0.0554. Originality/value This paper presents a hybrid optimization algorithm called the FCS algorithm for the multi-path selection. Also, a new fitness function is developed by considering the QoS constraints such as energy, link life time, distance and delay.


2020 ◽  
Vol 39 (6) ◽  
pp. 8125-8137
Author(s):  
Jackson J Christy ◽  
D Rekha ◽  
V Vijayakumar ◽  
Glaucio H.S. Carvalho

Vehicular Adhoc Networks (VANET) are thought-about as a mainstay in Intelligent Transportation System (ITS). For an efficient vehicular Adhoc network, broadcasting i.e. sharing a safety related message across all vehicles and infrastructure throughout the network is pivotal. Hence an efficient TDMA based MAC protocol for VANETs would serve the purpose of broadcast scheduling. At the same time, high mobility, influential traffic density, and an altering network topology makes it strenuous to form an efficient broadcast schedule. In this paper an evolutionary approach has been chosen to solve the broadcast scheduling problem in VANETs. The paper focusses on identifying an optimal solution with minimal TDMA frames and increased transmissions. These two parameters are the converging factor for the evolutionary algorithms employed. The proposed approach uses an Adaptive Discrete Firefly Algorithm (ADFA) for solving the Broadcast Scheduling Problem (BSP). The results are compared with traditional evolutionary approaches such as Genetic Algorithm and Cuckoo search algorithm. A mathematical analysis to find the probability of achieving a time slot is done using Markov Chain analysis.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


Author(s):  
Yang Wang ◽  
Feifan Wang ◽  
Yujun Zhu ◽  
Yiyang Liu ◽  
Chuanxin Zhao

AbstractIn wireless rechargeable sensor network, the deployment of charger node directly affects the overall charging utility of sensor network. Aiming at this problem, this paper abstracts the charger deployment problem as a multi-objective optimization problem that maximizes the received power of sensor nodes and minimizes the number of charger nodes. First, a network model that maximizes the sensor node received power and minimizes the number of charger nodes is constructed. Second, an improved cuckoo search (ICS) algorithm is proposed. This algorithm is based on the traditional cuckoo search algorithm (CS) to redefine its step factor, and then use the mutation factor to change the nesting position of the host bird to update the bird’s nest position, and then use ICS to find the ones that maximize the received power of the sensor node and minimize the number of charger nodes optimal solution. Compared with the traditional cuckoo search algorithm and multi-objective particle swarm optimization algorithm, the simulation results show that the algorithm can effectively increase the receiving power of sensor nodes, reduce the number of charger nodes and find the optimal solution to meet the conditions, so as to maximize the network charging utility.


Sign in / Sign up

Export Citation Format

Share Document