scholarly journals Voltage profile enhancement in distribution network using static synchronous compensator STATCOM

Author(s):  
Mohammed Yahya Suliman

STATCOM is one of FACTS devices that used as regulator for transmission and distribution systems which works for reactive power compensation. STATCOM utilisation in distribution system mostly for enhancing the profile of voltage, where used for adjusting the disturbance voltage by injecting into the system a controllable voltage. This paper present a Fuzzy controller based on STATCOM to enhance the voltage profile in distribution network. The controller of STATCOM has simulated for different types of abnormal load conditions of balance and unbalance load. The results of simulation show ability of proposed design to enhance the load voltage which was 96% of the nominal value.

2020 ◽  
Vol 01 (04) ◽  
pp. 150-169
Author(s):  
Sk. Md. Golam Mostafa ◽  
Jai Govind Shingh ◽  
H.M. Enamul Haque

The main goal of power utilities is to supply reliable and quality power to the end-users and fulfill their total demands at all possible locations. Most of the loads are connected in the distribution systems are inductive. The excessive reactive power demand over the distribution network causes tremendous reactive power losses and changes the voltage profile, hence the system's reliability. Shunt Capacitor Bank (SCB) is widely used in the distribution system for reactive power support, voltage profile, and system performance improvement. But there are some challenges to employ SCB in the distribution network; among them, ensuring the most optimum location and size is a big challenge to get the maximum benefits. Some existing techniques showed better loss reduction but needed either larger SCBs sizes or cause improper node voltage. In this research study, the first section provides an extensive literature review of optimal SCBs placement and sizing. Later on, a new technique called Combinatorial Method has been developed for sizing and sitting of optimal Shunt Capacitors to reduce the distribution loss significantly. The developed method was tested for different case studies using Indian practical 22-bus and IEEE-69-bus network. The results were compared with DSA, Fuzzy GA, and TLBO method and found better distribution feeder loss minimization and voltage profile improvement.


SCITECH Nepal ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1-7
Author(s):  
Avinash Khatri KC ◽  
Tika Ram Regmi

An electric distribution system plays an important role in achieving satisfactory power supply. The quality of power is measured by voltage stability and profile of voltage. The voltage profile is affected by the losses in distribution system. As the load is mostly inductive on the distribution system and requires large reactive power, most of the power quality problems can be resolved with requisite control of reactive power. Capacitors are often installed in distribution system for reactive power compensation. This paper presents two stage procedures to identify the location and size of capacitor bank. In the first stage, the load flow is carried out to find the losses of the system using sweep algorithm. In the next stage, different size of capacitors are initialized and placed in each possible candidate bus and again load flow for the system is carried out. The objective function of the cost incorporating capacitor cost and loss cost is formulated constrained with voltage limits. The capacitor with the minimum cost is selected as the optimized solution. The proposed procedure is applied to different standard test systems as 12-bus radial distribution systems. In addition, the proposed procedure is applied on a real distribution system, a section of Sallaghari Feeder of Thimi substation. The voltage drops and power loss before and after installing the capacitor were compared for the system under test in this work. The result showed better voltage profiles and power losses of the distribution system can be improved by using the proposed method and it can be a benefit to the distribution networks.


Author(s):  
Su Mon Myint ◽  
Soe Win Naing

Nowadays, the electricity demand is increasing day by day and hence it is very important not only to extract electrical energy from all possible new power resources but also to reduce power losses to an acceptable minimum level in the existing distribution networks where a large amount of power dissipation occurred. In Myanmar, a lot of power is remarkably dissipated in distribution system.  Among methods in reducing power losses, network reconfiguration method is employed for loss minimization and exhaustive technique is also applied to achieve the minimal loss switching scheme. Network reconfiguration in distribution systems is performed by opening sectionalizing switches and closing tie switches of the network for loss reduction and voltage profile improvement. The distribution network for existing and reconfiguration conditions are modelled and simulated by Electrical Transient Analyzer Program (ETAP) 7.5 version software. The inputs are given based on the real time data collected from 33/11kV substations under Yangon Electricity Supply Board (YESB). The proposed method is tested on 110-Bus, overhead AC radial distribution network of Dagon Seikkan Township since it is long-length, overloaded lines and high level of power dissipation is occurred in this system. According to simulation results of load flow analysis, voltage profile enhancement and power loss reduction for proposed system are revealed in this paper.


Author(s):  
Su Hlaing Win ◽  
Pyone Lai Swe

A Radial Distribution network is important in power system area because of its simple design and reduced cost. Reduction of system losses and improvement of voltage profile is one of the key aspects in power system operation. Distributed generators are beneficial in reducing losses effectively in distribution systems as compared to other methods of loss reduction. Sizing and location of DG sources places an important role in reducing losses in distribution network. Four types of DG are considered in this paper with one DG installed for minimize the total real and reactive power losses. The objective of this methodology is to calculate size and to identify the corresponding optimum location for DG placement for minimizing the total real and reactive power losses and to improve voltage profile   in primary distribution system. It can obtain maximum loss reduction for each of four types of optimally placed DGs. Optimal sizing of Distributed Generation can be calculated using exact loss formula and an efficient approach is used to determine the optimum location for Distributed Generation Placement.  To demonstrate the performance of the proposed approach 36-bus radial distribution system in Belin Substation in Myanmar was tested and validated with different sizes and the result was discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mezigebu Getinet Yenealem ◽  
Livingstone M. H. Ngoo ◽  
Dereje Shiferaw ◽  
Peterson Hinga

The expansion of renewable energy is continuing powerfully. Electrical system ought to transmit power with diminished loss, improved power quality, and reliability while pleasing the need of customer’s load demand. Nevertheless, owing to the exhaustion of fossil fuels and their environmental impact, the availability of quality, stable, and reliable power in developing countries is worrying. Integrating a solar-wind based microgrid to the distribution network is the more feasible and best alternative solution to gratify the customer intensifying power demand while seeing the strict environmental regulations of generating power. However, the microgrid system connected in a distribution network has diverse problems and challenges. The problems comprise the development of voltage sag and swell, voltage unbalance, and power losses because of the intermittent nature of PV and wind resources. The objective of this study is to integrate microgrid system with STATCOM (static synchronous compensator) controller to ensure the higher power flow with enhanced voltage profile and reduced power loss. MATLAB/PSAT is used to model microgrid and STATCOM controller connected to the grid. Proportional integral (PI) and fuzzy logic controllers (FLC) are also applied to control the STATCOM. The effectiveness of STATCOM with microgrid integration is tested by connecting to the main distribution system using standard IEEE 30-bus system. Finally, it was observed that STATCOM raises the capacity of the distribution line and contributes to voltage profile improvements and power loss reduction.


2012 ◽  
Vol 268-270 ◽  
pp. 1389-1392 ◽  
Author(s):  
You Jie Ma ◽  
Yi Li ◽  
Xue Song Zhou

This paper reviews the development of static synchronous compensator (STATCOM), and analylizes the structure of its main circuit, its working principles and control strategies. At last, this paper comes to a conclusion of technical characteristics of STATCOM and outlook of its development trends. Fast acting STATCOM, a representative of FACTS family, is a promising technology which is extensively used as state-of-the-art dynamic shunt compensator for reactive power control in transmission and distribution system. STATCOM controller employs various solid-state converter topologies, magnetics configurations, control algorithms, and switching techniques and so on. The development of STATCOM controller has been well reported in literature with its versatile application in power system. Thus deep investigation of STATCOM from the perspective of its intelligent control and the configuration of STATCOM’s main circuit is valuable.


2013 ◽  
Vol 768 ◽  
pp. 371-377 ◽  
Author(s):  
E. Rekha ◽  
D. Sattianadan ◽  
M. Sudhakaran

Distributed generators (DG) are much beneficial in reducing the losses effectively compared to other methods of loss reduction. It is expected to become more important in future generation. This paper deals with the multi DGs placement in radial distribution system to reduce the system power loss and improve the voltage profile by using the optimization technique of particle swarm optimization (PSO). The PSO provides a population-based search procedure in which individuals called particles change their positions with time. Initially, the algorithm randomly generates the particle positions representing the size and location of DG. The proposed PSO algorithm is used to determine optimal sizes and locations of multi-DGs. The objective function is the combination of real, reactive power loss and voltage profile with consideration of weights and impact indices with and without DG. Test results indicate that PSO method can obtain better results on loss reduction and voltage profile improvement than the simple heuristic search method on the IEEE33-bus and IEEE 90-bus radial distribution systems.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5516
Author(s):  
Filip Relić ◽  
Predrag Marić ◽  
Hrvoje Glavaš ◽  
Ivica Petrović

In the modern power system, Flexible Alternating Current Transmission System (FACTS) devices are widely used. An increased share of the distributed generation (DG) and the development of microgrids change the power flows in the existing distribution networks as well as a conventional power flow direction from the transmission to the distribution network level which may affect the overall stability aspects. The paper shows the FACTS devices’ implementation influence on the performance of the distribution network with integrated renewable energy sources (RES) observing the aspects of the oscillatory stability and the low-voltage motor starting. The FACTS devices, in particular the static var compensators (SVC), have been allocated according to a novel algorithm proposed in the paper. The algorithm uses an iterative process to determine an optimal location for implementation and rating power of SVC considering active power losses minimization, improvement of the voltage profile and maximizing return of investment (ROI) of FACTS devices. Novel constraints—transformer station construction constraint, SVC industrial nominal power value constraint and the constraint of distribution system operator (DSO) economic willingness to investment in the distribution network development are considered in the proposed algorithm. The analysis has been performed on 20 kV rural distribution network model in DIgSILENT PowerFactory software.


2013 ◽  
Vol 448-453 ◽  
pp. 1796-1801
Author(s):  
Chun Guang Tian ◽  
Tian Yi Wang ◽  
Guo Wei Cai ◽  
De You Yang

Distributed wind power will bring great impact on transient voltage of distribution network. Based on the characteristics of distributed wind power, this paper presents a doubly-fed induction Generator with four wind speed model and Crowbar protection model in DigSILENT/PowerFactory. The analysis is carried out for a test distribution system representative of the Benchmark 20kv grid. Firstly, this paper respectively provide simulation results showing the effects of distributed wind power on the dynamic voltage in wind fluctuation and a faulted system. Then, a static synchronous compensator (STATCOM) is used to improve the voltage profile of the distribution system.


Author(s):  
Olatunde Oladepo ◽  
Hasimah Abdul Rahman

<p>Voltage profile and power losses on the distribution system is a function of real and imaginary power loading condition. This can be effectively managed through the controlled real and reactive power flow by optimal placement of capacitor banks (CB) and distributed generators (DG). This paper presents adaptive Particle Swarm Optimization (MPSO) to efficiently tackle the problem of simultaneous allocation of DG and CB in radial distribution system to revamp voltage magnitude and reduce power losses. The modification to the conventional PSO was achieved by replacing the inertial weight equation (W) in the velocity update equation base on the particle best experience in the previous iteration. The inertial weight equation is designed to vary with respect to the iteration value in the algorithm. The proposed method was investigated on IEEE 30-bus, 33-bus and 69-bus test distribution systems. The results shows a significant improvement in the rate of convergence of APSO, improved voltage profile and loss reduction.</p>


Sign in / Sign up

Export Citation Format

Share Document