scholarly journals Adaptive photovoltaic solar module based on internet of things and web-based monitoring system

Author(s):  
Murizah Kassim ◽  
Fadila Lazim

<span>This paper presents an intelligent of single axis automatic adaptive photovoltaic solar module. A static solar panel has an issue of efficiency on shading effects, irradiance of sunlight absorbed, and less power generates. This aims to design an effective algorithm tracking system and a prototype automatic adaptive solar photovoltaic (PV) module connected through </span><span>internet of things (IoT). The system has successfully designated on solving efficiency optimization. A tracking system by using active method orientation and allows more power and energy are captured. The solar rotation angle facing aligned to the light-dependent resistor (LDR) voltage captured and high solar panel voltage measured by using Arduino microcontroller. Real-time data is collected from the dynamic solar panel, published on Node-Red webpage, and running interactive via android device. The system has significantly reduced time. Data captured by the solar panel then analyzed based on irradiance, voltage, current, power generated and efficiency. Successful results present a live data analytic platform with active tracking system that achieved larger power generated and efficiency of solar panel compared to a fixed mounted array. This research is significant that can help the user to monitor parameters collected by the solar panel thus able to increase 51.82% efficiency of the PV module.</span>

Any work to improve the performance of the solar modules could add to their economic competitiveness against fossil fuels. In the present work the performance of PV solar module was improved by using V-Trough concentrator system (CPV) which moved by two axis tracking system. The concentrator consists of two flat reflectors of area 2 m2 for each one with geometric concentration ratio of 2X. To optimize the performance of the V-Trough CPV systems, two types of reflector material, Aluminum and mirror (glass coated by silver nitrate) were used. The results indicated that the temperature of PV reference module was higher than the ambient temperature by 27oC but there is too small difference in temperature between the tracking PV module with the reference which ranged to 2oC, while the temperature of the CPV system was higher than reference by 37oC. The temperature of the PV module under mirror reflectors was lower than module combined with Aluminum reflectors by 3oC. As a result of arising of the temperature of CPV system in compare with PV reference module, the open circuit voltage was droop by 0.7 V, 0.5 V for PV module under mirror and Aluminum reflectors respectively. The reflectors increased the short circuit current values by 2.1 A, 2.6 A for PV module combined with mirror and Aluminum reflectors respectively. Accordingly the performance (as an average daily gain of output power) of the PV solar module was improved by using V-Trough CPV system, 44%, 34% by using Aluminum and mirror reflectors respectively.


2020 ◽  
Author(s):  
Abdou Khouakhi ◽  
Ian Pattison ◽  
Jesús López-de la Cruz ◽  
Oliver Mendoza-Cano ◽  
Robert Edwards ◽  
...  

&lt;p&gt;Urban flooding is one of the major issues in many parts of the world and its management often challenging. Here we present Internet of Things (IoT) approach for monitoring urban flooding in the City of Colima, Mexico. A network of water level and weather sensors have been developed along with a web-based data platform integrated with IoT techniques to retrieve data using 3G/4G and Wi-Fi networks. The developed architecture uses the Message Queuing Telemetry Transport protocol to send real-time data packages from fixed nodes to a server that stores retrieved data in a non-relational database. Data can be accessed and displayed through different queries and graphical representations, allowing future use in flood analysis and prediction. Additionally, machine learning algorithms are integrated into the system for short-range water level predictions at different nodes of the network.&lt;/p&gt;


2020 ◽  
Vol 12 (2) ◽  
pp. 78-84
Author(s):  
Abhisak Sharma ◽  
Pardeep Kumar ◽  
Gyander Ghangas ◽  
Vishal Gupta ◽  
Himanshu Sharma ◽  
...  

This paper represents the comparison of the voltages generated by the tracking and static solar panels. The work also aims to design and  fabrication of a cheap and efficient tracking device. This device comprises of hardware and software. A rigid mechanical structure with nut and  screw as the transmission is developed. 4 LDRs and DC motors are employed, which are cheap and less power consuming. As far as the software  concerns, an open source microcontroller “Arduino UNO” board is used because of their simplicity and cost effectiveness. This Sun tracking device with a PV panel installed on it, is placed outside at the roof of the building along with a static solar panel. Output voltages generated from both panels are recorded in SD card through data logger in Arduino UNO. This real-time data shows the difference in amplitude of both the signals. Voltage of rotating panel is more than static one resulting that the tracking device can increase the efficiency of the panel by exposing the PV panel more to the sun light. Hence this setup proves that the solar panel with tracking system generates more energy than solar panel without tracking system. Keywords: Solar Tracker, LDR, PV Panel, Arduino UNO Board.


2019 ◽  
Vol 1 (1) ◽  
pp. 121-130
Author(s):  
I Wayan Agus Arimbawa ◽  
Abdul Chalel Rahman ◽  
Andy Hidayat Jatmika

The research of motor vehicle tracking system using GPS have been done by some researchers. However those researches still have problems, such as the location’s accuracy, data transmision that is still manual using SMS, and systems that have not been integrated with the web server. This research applies the concept of Internet of Things on a vehicle system device consisting of four parts. There are an Arduino Uno R3 microcontroller as part of control, GY-NEO6MV2 GPS module providing position information, SIM900A GSM/GPRS module used to send or receive data from server, and web-based information system used to monitor position of vehicle. From the results it can be concluded that GPS Tracker device that was designed has ran well and produced an average error difference of 2,457 meters.


2021 ◽  
Vol 230 ◽  
pp. 111219
Author(s):  
Alae Azouzoute ◽  
Charaf Hajjaj ◽  
Houssain Zitouni ◽  
Massaab El Ydrissi ◽  
Oumaima Mertah ◽  
...  

2021 ◽  
pp. 1-15
Author(s):  
Mengyao Cui ◽  
Seung-Soo Baek ◽  
Rubén González Crespo ◽  
R. Premalatha

BACKGROUND: Health monitoring is important for early disease diagnosis and will reduce the discomfort and treatment expenses, which is very relevant in terms of prevention. The early diagnosis and treatment of multiple conditions will improve solutions to the patient’s healthcare radically. A concept model for the real-time patient tracking system is the primary goal of the method. The Internet of things (IoT) has made health systems accessible for programs based on the value of patient health. OBJECTIVE: In this paper, the IoT-based cloud computing for patient health monitoring framework (IoT-CCPHM), has been proposed for effective monitoring of the patients. METHOD: The emerging connected sensors and IoT devices monitor and test the cardiac speed, oxygen saturation percentage, body temperature, and patient’s eye movement. The collected data are used in the cloud database to evaluate the patient’s health, and the effects of all measures are stored. The IoT-CCPHM maintains that the medical record is processed in the cloud servers. RESULTS: The experimental results show that patient health monitoring is a reliable way to improve health effectively.


Author(s):  
A Imthiyas ◽  
S. Prakash ◽  
N Vijay ◽  
A Alwin Abraham ◽  
B Ganesh Kumar

2016 ◽  
Vol 6 (5) ◽  
pp. 1269-1277 ◽  
Author(s):  
Alberto Dolara ◽  
George Cristian Lazaroiu ◽  
Sonia Leva ◽  
Giampaolo Manzolini ◽  
Luca Votta

Sign in / Sign up

Export Citation Format

Share Document