scholarly journals Modified Predictive Control for a Class of Electro-Hydraulic Actuator

Author(s):  
Abdulrahman A.A. Emhemed ◽  
Rosbi Bin Mamat ◽  
Ahmad ‘Athif Mohd Faudzi ◽  
Mohd Ridzuan Johary ◽  
Khairuddin Osman

<span>Many model predictive control (MPC) algorithms have been proposed in the literature depending on the conditionality of the system matrix and the tuning control parameters. A modified predictive control method is proposed in this paper. The modified predictive method is based on the control matrix formulation combined with optimized move suppression coefficient. Poor dynamics and high nonlinearities are parts of the difficulties in the control of the Electro-Hydraulic Actuator (EHA) functions, which make the proposed matrix an attractive solution. The developed controller is designed based on simulation model of a position control EHA to reduce the overshoot of the system and to achieve better and smoother tracking. The performance of the designed controller achieved quick response and accurate behavior of the tracking compared to the previous study.</span>

Author(s):  
Abdulrahman A.A. Emhemed ◽  
Rosbi Bin Mamat ◽  
Ahmad ‘Athif Mohd Faudzi ◽  
Mohd Ridzuan Johary ◽  
Khairuddin Osman

<span>Many model predictive control (MPC) algorithms have been proposed in the literature depending on the conditionality of the system matrix and the tuning control parameters. A modified predictive control method is proposed in this paper. The modified predictive method is based on the control matrix formulation combined with optimized move suppression coefficient. Poor dynamics and high nonlinearities are parts of the difficulties in the control of the Electro-Hydraulic Actuator (EHA) functions, which make the proposed matrix an attractive solution. The developed controller is designed based on simulation model of a position control EHA to reduce the overshoot of the system and to achieve better and smoother tracking. The performance of the designed controller achieved quick response and accurate behavior of the tracking compared to the previous study.</span>


2012 ◽  
Vol 569 ◽  
pp. 533-538
Author(s):  
En Chao Yang ◽  
Qing Wei ◽  
Run Bin Cai ◽  
Hong Xu Ma

This paper presents modeling and dual-loop control of a non-linear hydraulic actuator applied on the quadruped robot. The pure position control of the actuator is hard to achieve because it’s a three-order system. So we propose the dual-loop control method to decompose it. The controller structure of the system is composed of two loops namely outer position control loop and inner force control loop. Outer loop controller is used to calculate the optimum target force to reject the errors of the position control, while, the inner loop controller is used to keep the actual force close to this desired force.


2010 ◽  
Vol 118-120 ◽  
pp. 640-644
Author(s):  
Jian Xin Liu ◽  
Yu Liu ◽  
Ping Tan

This paper presents a kind of all-digital integrated hydraulic actuator (IHA) unit to drive heavy load object without centralized oil tank. In order to improve the control quality of the actuation system while eliminating or reducing the disturbance, and also to solve the problem of flow rate mismatch existed in IHA with single-rod cylinder actuator, a fuzzy PID PWM controller is suggested. Simulations on the integrated hydraulic actuator unit are carried out to evaluate the effectiveness of the proposed control method when applied to hydraulic systems with various external disturbances encountered in real working conditions. Simulation results are discussed and some conclusions are given.


Author(s):  
Zhitao Wang ◽  
Shuoshuo Liu ◽  
Tielei Li ◽  
Shuying Li

Abstract In this paper, the integrated simulation method is used to study the dynamic characteristics and control methods of propelling nozzle when it is coupled with the gas generator. The overall simulation model of the double-shaft hybrid exhaust turbofan engine was established by the volume inertia method under MATLAB/Simulink platform. A simulation model of the propelling nozzle hydraulic actuator was established under the AMESim platform. These two models are transmitted through the “Propelling Nozzle Throat Kinematics Simulation Module”, thus achieving the construction of the integrated simulation model. Then, based on the integrated model, a fuzzy self-tuning PI controller is developed. The quantization factor is obtained through optimization to further optimize the coupled dynamic response of the propelling nozzle. The simulation results show that the integrated simulation model captures the special change of aerodynamic force during the nozzle area adjustment process, which can more realistically show the working condition of the actuator. Controller design based on integrated simulation model is more reasonable. The fuzzy self-tuning PI controller used in this paper corrects the PI parameters online according to the fuzzy control rules, so that the hydraulic actuator of the nozzle formed by numerical simulation has faster response, and good dynamic characteristics. It has certain guiding significance for follow-up research.


2014 ◽  
Vol 592-594 ◽  
pp. 2229-2233
Author(s):  
Kiran Bellad ◽  
Somashekhar S. Hiremath ◽  
M. Singaperumal ◽  
S. Karunanidhi

Electro-Hydraulic Actuator (EHA) replaces centralized hydraulic system by a local compact actuator system. It is gaining more attention due to its compactness and reliability. The control method should be appropriate to achieve accurate position control and stability. The EHA system model is developed in AMESim software and Proportional-Integral-Derivative (PID) control is used for position tracking of the cylinder. Design Exploration facility of AMESim software provides a platform to optimize PID parameters using Genetic Algorithm (GA). Simulation results show that position tracking with no overshoot and less settling time.


Robotica ◽  
1998 ◽  
Vol 16 (4) ◽  
pp. 463-474 ◽  
Author(s):  
N. Sepehri ◽  
G. Wu

This paper reports the results of an experimental study, which was conducted to evaluate the performance and implementation aspects of a generalized predictive control (GPC) technique to an electro-hydraulic positioning actuator. Poor dynamics and high nonlinearities form part of the difficulty in the control of hydraulic functions which make the application of adaptive controls an attractive solution. The applicability of GPC to the position control of hydraulic manipulator has been investigated through computer simulations in the literature. However, there is no experimental record of applying this technique to an actual hydraulic system. A suitable plant model is established and recursive U-D factorization technique is adopted for on-line estimation of time-varying plant parameters. Experimental results are obtained from a laboratory electrohydraulic actuator test stand. Various benchmark tests, comprising step and tracking inputs, demonstrate good performance and the promise of the technique. In spite of significant actuator dynamics (control voltage saturation, flow nonlinearity and dry frictional nonlinearity in the hydraulic actuator), successful control tests could be performed repetitively.


1997 ◽  
Vol 36 (4) ◽  
pp. 135-142 ◽  
Author(s):  
Norihito Tambo ◽  
Yoshihiko Matsui ◽  
Ken-ichi Kurotani ◽  
Masakazu Kubota ◽  
Hirohide Akiyama ◽  
...  

A coagulation process for water purification plants mainly uses feedforward control based on raw water quality and empirical data and requires operator's help. We developed a new floc sensor for measuring floc size in a flush mixer to be used for floc control. A control system using model predictive control was developed on the floc size data. A series of experiments was performed to confirm controllability of settled water quality by controlling flush mixer floc size. An automatic control with feedback from the coagulation process was evaluated as practical and reliable. Finally this new control method was applied for actual plant and evaluated as practical.


Sign in / Sign up

Export Citation Format

Share Document