scholarly journals Evaluating the Impact of Transmission Range on the Performance of VANET

Author(s):  
Akram A. Almohammedi ◽  
Nor K. Noordin ◽  
Sabri Saeed

Recently, interest in the field of Vehicular Ad-hoc Networks (VANETs) has grown among research community to improve traffic safety and efficiency on the roads. Despite the many advantages, the transmission range in vehicular network remains one of the major challenges due to the unique characteristics of VANETs such as various communication environments, highly dynamic topology, high node mobility and traffic density. The network would suffer from a broadcast-storm in high vehicular density when a fixed transmission range in VANET is used, while in sparse vehicular density the network could be disconnected frequently. In this paper, we evaluated the impact of different transmission ranges and number of flows formed between vehicles in a highway scenario using AODV as routing protocol. In order to validate the simulation of VANET, traffic and network simulators (SUMO & NS-2) have been used. The performance was evaluated in terms of packet delivery ratio and end-to-end delay. The simulation results have shown that better performance was achieved in term of higher PDR and lower end-to-end delay for less than 500 meters transmission range. On the contrary, the PDR started to decrease and end-to-end delay increased when the transmission range exceeded 500 meters. The performance degraded as the number of flows increased.

Author(s):  
Akram A. Almohammedi ◽  
Nor K. Noordin ◽  
Sabri Saeed

Recently, interest in the field of Vehicular Ad-hoc Networks (VANETs) has grown among research community to improve traffic safety and efficiency on the roads. Despite the many advantages, the transmission range in vehicular network remains one of the major challenges due to the unique characteristics of VANETs such as various communication environments, highly dynamic topology, high node mobility and traffic density. The network would suffer from a broadcast-storm in high vehicular density when a fixed transmission range in VANET is used, while in sparse vehicular density the network could be disconnected frequently. In this paper, we evaluated the impact of different transmission ranges and number of flows formed between vehicles in a highway scenario using AODV as routing protocol. In order to validate the simulation of VANET, traffic and network simulators (SUMO & NS-2) have been used. The performance was evaluated in terms of packet delivery ratio and end-to-end delay. The simulation results have shown that better performance was achieved in term of higher PDR and lower end-to-end delay for less than 500 meters transmission range. On the contrary, the PDR started to decrease and end-to-end delay increased when the transmission range exceeded 500 meters. The performance degraded as the number of flows increased.


2021 ◽  
Vol 10 (2) ◽  
pp. 1080-1091
Author(s):  
Hussain Falih Mahdi ◽  
Mohammed Salah Abood ◽  
Mustafa Maad Hamdi

VANET is a branch of MANETS, where each vehicle is a node, and a wireless router will run. The vehicles are similar to each other will interact with a wide range of nodes or vehicles and establish a network. VANETs provide us with the infrastructure to build new solutions for improving safety and comfort for drivers and passengers. There are several routing protocols proposed and evaluated for improving VANET's performance. The simulator is preferred over external experience because it is easy, simple, and inexpensive. In this paper, we choose AODV protocol, DSDV protocol, and DSR protocol with five different nodes density. For each protocol, as regards specific parameters like (throughput, packet delivery ratio, and end- to- end delay). On simulators that allow users to build real-time navigation models of simulations using VANET. Tools (SUMO, MOVE, and NS-2) were used for this paper, then graphs were plotted for evaluation using Trace-graph. The results showed the DSR is much higher than AODV and DSDV, In terms of throughput. While DSDV is the best choice because of the low average end to end delay. From the above, we conclude that each strategy has its own negative and positive aspects that make it ideally suited to a particular scenario than other scenarios.


Author(s):  
Yahya M. Tashtoush ◽  
Mohammad A. Alsmirat ◽  
Tasneem Alghadi

Purpose The purpose of this paper is to propose, a new multi-path routing protocol that distributes packets over the available paths between a sender and a receiver in a multi-hop ad hoc network. We call this protocol Geometric Sequence Based Multipath Routing Protocol (GMRP). Design/methodology/approach GMRP distributes packets according to the geometric sequence. GMRP is evaluated using GloMoSim simulator. The authors use packet delivery ratio and end-to-end delay as the comparison performance metrics. They also vary many network configuration parameters such as number of nodes, transmission rate, mobility speed and network area. Findings The simulation results show that GMRP reduces the average end-to-end delay by up to 49 per cent and increases the delivery ratio by up to 8 per cent. Originality/value This study is the first to propose to use of geometric sequence in the multipath routing approach.


Author(s):  
Ali H. Wheeb ◽  
Dimitris N. Kanellopoulos

Mobile ad-hoc networks (MANETs) are composed of mobile nodes communicating through wireless medium, without any fixed centralized infrastructure. Providing quality of service (QoS) support to multimedia streaming applications over MANETs is vital. This paper focuses on QoS support, provided by the stream control transmission protocol (SCTP) and the TCP-friendly rate control (TFRC) protocol to multimedia streaming applications over MANETs. In this study, three QoS parameters were considered jointly: (1) packet delivery ratio (PDR), (2) end-to-end delay, (3) and throughput. Specifically, the authors analyzed and compared the simulated performance of the SCTP and TFRC transport protocols for delivering multimedia streaming over MANETs. Two simulation scenarios were conducted to study the impact of traffic load and node speed (mobility) to their performance. Based on the simulation results, the authors found that the PDR and the end-to-end delay of TFRC are slightly better than those of SCTP in both scenarios. Additionally, the performance of SCTP is significantly better than TFRC in terms of throughput.


2020 ◽  
Vol 9 (3) ◽  
pp. 40 ◽  
Author(s):  
Afsana Ahamed ◽  
Hamid Vakilzadian

A vehicular ad hoc network (VANET) is a technology in which moving cars are used as routers (nodes) to establish a reliable mobile communication network among the vehicles. Some of the drawbacks of the routing protocol, Ad hoc On-Demand Distance Vector (AODV), associated with VANETs are the end-to-end delay and packet loss. We modified the AODV routing protocols to reduce the number of route request (RREQ) and route reply (RREP) messages by adding direction parameters and two-step filtering. The two-step filtering process reduces the number of RREQ and RREP packets, reduces the packet overhead, and helps to select the stable route. In this study, we show the impact of the direction parameter in reducing the end-to-end delay and the packet loss in AODV. The simulation results show a 1.4% reduction in packet loss, an 11% reduction in the end-to-end delay, and an increase in throughput.


Author(s):  
Linna Oktaviana Sari ◽  
Agusurio Azmi ◽  
Ery Safrianti ◽  
Feranita Jalil

Pekanbaru city is a large area, therefore traffic congestion often occurs due to the density of society’s vehicles. From this problem, it is needed a technology that can exchange information between vehicles. Information Technology that can involve many vehicles with special network types without dependence on an infrastructure is Ad Hoc Network. One type of this network is Vehicular Ad Hoc Network (VANET). VANET is a new concept in enabling communication between Vehicle to Vehicle (V2V). For efficient data packet delivery, VANET requires a routing protocol. In this research, for simulated and analyzed performance is used the Dynamic Source Routing (DSR) and Temporally Ordered Routing Algorithm (TORA) protocol. NS-2 is used to simulated a moved nodes, SUMO software is used to simulated real map of SKA Mall crossroad and parameter the quality of performance routing protocol DSR can determined by End to End Delay, Packet Delivery Ratio (PDR) and Routing Overhead (RO). This simulation uses scenario 100 nodes, 150 nodes, 200 nodes and 250 nodes. The simulation results with the scenario of changing the number of nodes, the DSR routing protocol produces better performance with an average of  End to End Delay is 0.1066 s, average of PDR is 95.45% and average of RO is 1.0076. While the TORA routing protocol has an average of End to End Delay is 0.1163s, average of PDR is 93.49% and average of RO is 1.0801. And in the scenario of node speed changes, the TORA routing protocol produces better performance with an average of End to End Delay is 0.0861 s and average of PDR 97.37%. While the DSR routing protocol is better with an average of RO is 1.0076.


Author(s):  
Nadeem Iqbal ◽  
Mohammad Shafie Bin Abd Latiff ◽  
Shafi’i Muhammad Abdulhamid

Dynamic topology change and decentralized makes routing a challenging task in mobile ad hoc network. Energy efficient routing is the most challenging task in MANET due to limited energy of mobile nodes. Limited power of batteries typically use in MANET, and this is not easy to change or replace while running communication. Network disorder can occur for many factors but in middle of these factors deficiency of energy is the most significant one for causing broken links and early partition of the network. Evenly distribution of power between nodes could enhance the lifetime of the network, which leads to improving overall network transmission and minimizes the connection request. To discourse this issue, we propose an Energy Aware Routing Protocol (EARP) which considers node energy in route searching process and chooses nodes with higher energy levels. The EARP aim is to establish the shortest route from source to destination that contains energy efficient nodes. The performance of EARP is evaluated in terms of packet delivery ratio, network lifetime, end-to-end delay and throughput. Results of simulation done by using NS2 network simulator shows that EARP can achieve both high throughput and delivery ratio, whereas increase network lifetime and decreases end-to-end delay.


Author(s):  
Irfan Ahmad ◽  
Fahad Masood ◽  
Arbab Wajid Ullah Khan

In Mobile Ad hoc Networks (MANET) nodes often change their location independently where neither fixed nor centralized infrastructure is present. Nodes communicate with each other directly or via intermediate nodes. The advantages of the MANET layout lead to self-structure and compatibility to most important functions such as traffic distribution and load balancing. Whenever the host moves rapidly in the network the topology becomes updated due to which the structure of MANET varies accordingly. In the literature, different routing protocols have been studied and compared by researchers. Still, there are queries regarding the performance of these protocols under different scenarios. MANETs are not based on a predesigned structure. In this paper, the performance assessment of the Quality of Services (QoS) for different protocols such as Ad hoc On-Demand Distance Vector (AODV), Temporally Ordered Routing Algorithm (TORA) and Zone Routing Protocol (ZRP) in the existence of the various number of communicating nodes is studied. The performance matrices throughput, end – to – end delay and packet delivery ratio are considered for simulations. Ns 2.35 simulator is used for carrying out these simulations. Results are compared for AODV, TORA, and ZRP routing protocols. The results show that AODV and TORA perform well in end – to – end delay as compared to zone routing protocol. Zone routing protocol performs well in packet delivery ratio and throughput as compared to both the other protocols.


2021 ◽  
Vol 10 (1) ◽  
pp. 434-440
Author(s):  
Hussein M. Haglan ◽  
Salama A. Mostafa ◽  
Noor Zuraidin Mohd Safar ◽  
Aida Mustapha ◽  
Mohd. Zainuri Saringatb ◽  
...  

Mobile Ad-hoc Networks (MANETs) are independent systems that can work without the requirement for unified controls, pre-setup to the paths/routes or advance communication structures. The nodes/hubs of a MANET are independently controlled, which permit them to behave unreservedly in a randomized way inside the MANET. The hubs can leave their MANET and join different MANETs whenever the need arises. These attributes, in any case, may contrarily influence the performance of the routing conventions (or protocols) and the general topology of the systems. Along these lines, MANETs include uniquely planned routing conventions that responsively as well as proactively carry out the routing. This paper assesses and looks at the effectiveness (or performance) of five directing conventions which are AOMDV, DSDV, AODV, DSR and OLSR in a MANET domain. The research incorporates executing a simulating environment to look at the operation of the routing conventions dependent on the variable number of hubs. Three evaluation indices are utilized: Throughput (TH), Packet Delivery Ratio (PDR), and End-to-End delay (E2E). The assessment outcomes indicate that the AODV beats other conventions in the majority of the simulated scenarios.


Sign in / Sign up

Export Citation Format

Share Document