scholarly journals Positioning of a Wireless Relay Node for Useful Cooperative Communication

Author(s):  
Tariq Muhamad Amjad ◽  
Elsheikh Mohamed Ahmed Elsheikh

<span>Given the exorbitant amount of data transmitted and the increasing demand for data connectivity in the 21st century, it has become imperative to search for pro-active and sustainable solutions to the effectively alleviate the overwhelming burden imposed on wireless networks. In this study a Decode and Forward cooperative relay channel is analyzed, with the employment of Maximal Ratio Combining at the destination node as the method of offering diversity combining. The system framework used is based on a three-node relay channel with a source node, relay node and a destination node. A model for the wireless communications channel is formulated in order for simulation to be carried out to investigate the impact on performance of relaying on a node placed at the edge of cell. Firstly, an AWGN channel is used before the effect of Rayleigh fading is taken into consideration. Result shows that performance of cooperative relaying performance is always superior or similar to conventional relaying. Additionally, relaying is beneficial when the relay is placed closer to the receiver. </span>

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Sana Ezzine ◽  
Fatma Abdelkefi ◽  
Jean Pierre Cances ◽  
Vahid Meghdadi ◽  
Ammar Bouallégue

Powerline network is recognized as a favorable infrastructure for Smart Grid to transmit information in the network thanks to its broad coverage and low cost deployment. The existing works are trying to improve and adapt transmission techniques to reduce Powerline Communication (PLC) channel attenuation and exploit the limited bandwidth to support high data rate over long distances. Two-hop relaying BroadBand PLC (BB-PLC) system, in which Orthogonal Frequency Division Multiplexing (OFDM) is used, is considered in this paper. We derive and compare the PLC channel capacity and the end-to-end Average BER (ABER) for OFDM-based direct link (DL) BB-PLC system and for OFDM-based two-hop relaying BB-PLC system for Amplify and Forward (AF) and Decode and Forward (DF) protocols. We analyze the improvements when we consider the direct link in a cooperative communication when the relay node only transmits the correctly decoded signal. Maximum ratio combining is employed at the destination node to detect the transmitted signal. In addition, in this paper, we highlight the impact of the relay location on the channel capacity and ABER for AF and DF transmission protocols. Moreover, an efficient use of the direct link was also investigated in this paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


2021 ◽  
Author(s):  
Elyes Balti

In this work, we present a framework analysis of a millimeter wave (mmWave) vehicular communications systems. Communications between vehicles take place through a cooperative relay which acts as an intermediary base station (BS). The relay is equipped with multiple transmit and receive antennas and it employs decode-and-forward (DF) to process the signal. Also, the relay applies maximal ratio combining (MRC), and maximal ratio transmission (MRT), respectively, to receive and forward the signal.As the vehicles' speeds are relative high, the channel experiences a fast fading and this time variation is modeled following the Jake's autocorrelation model. We also assume narrowband fading channel. Closed-form expressions of the reliability metrics such as the outage probability and the mean rate are derived. Capitalizing on these performances, we derive the high signal-to-noise-ratio (SNR) asymptotes to get full insights into the system gains such as the diversity and coding gains.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2472 ◽  
Author(s):  
Tianwen Yuan ◽  
Mingang Liu ◽  
Yizhi Feng

In this paper, we study the outage and throughput performance for the simultaneous wireless information and power transfer (SWIPT) cooperative decode-and-forward (DF) communication systems. The hybrid receiver that uses both time switching (TS) and power splitting (PS) methods for energy harvesting (EH) and information decoding (ID), and the piece-wise linear EH model that captures the non-linear input-output characteristic of the EH circuit, are considered. We present exact analytical expressions of the outage probability (OP) and throughput, which are expressed as single definite integral on finite interval and can be easily evaluated, for the systems in Rayleigh fading channel. For further simplicity of calculation, we derive novel and closed-form approximate expressions of the OP and throughput. The impact of different system parameters on the system performance is investigated. Numerical results show the high accuracy of the proposed closed-form approximate expressions especially in the region of higher signal-to-noise ratio (SNR). It is also shown that the system performance is greatly overestimated when the ideal linear EH model is used instead of the practical non-linear EH model. A different result to the non-hybrid receiver with both linear EH model and non-linear EH model that there exists an optimal location to minimize the OP for the hybrid receiving relay node with non-linear EH model is also demonstrated.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 937
Author(s):  
Sangku Lee ◽  
Janghyuk Youn ◽  
Bang Chul Jung

For the next generation of manufacturing, the industrial internet of things (IoT) has been considered as a key technology that enables smart factories, in which sensors transfer measured data, actuators are controlled, and systems are connected wirelessly. In particular, the wireless sensor network (WSN) needs to operate with low cost, low power (energy), and narrow spectrum, which are the most technical challenges for industrial IoT networks. In general, a relay-assisted communication network has been known to overcome scarce energy problems, and a spectrum-sharing technique has been considered as a promising technique for the radio spectrum shortage problem. In this paper, we propose a phase steering based hybrid cooperative relaying (PSHCR) technique for the generic relay-assisted spectrum-shared WSN, which consists of a secondary transmitter, multiple secondary relays (SRs), a secondary access point, and multiple primary access points. Basically, SRs in the proposed PSHCR technique operate with decode-and-forward (DF) relaying protocol, but it does not abandon the SRs that failed in decoding at the first hop. Instead, the SRs operate with amplify-and-forward (AF) protocol when they failed in decoding at the first hop. Furthermore, the SRs (regardless of operating with AF or DF protocol) that satisfy interference constraints to the primary network are allowed to transmit a signal to the secondary access point at the second hop. Note that phase distortion is compensated through phase steering operation at each relay node before second-hop transmission, and thus all relay nodes can operate in a fully distributed manner. Finally, we validate that the proposed PSHCR technique significantly outperforms the existing best single relay selection (BSR) technique and cooperative phase steering (CPS) technique in terms of outage performance via extensive computer simulations.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4783
Author(s):  
Farnaz Khodakhah ◽  
Aamir Mahmood ◽  
Patrik Österberg ◽  
Mikael Gidlund

The increasing proliferation of Internet-of-things (IoT) networks in a given space requires exploring various communication solutions (e.g., cooperative relaying, non-orthogonal multiple access, spectrum sharing) jointly to increase the performance of coexisting IoT systems. However, the design complexity of such a system increases, especially under the constraints of performance targets. In this respect, this paper studies multiple-access enabled relaying by a lower-priority secondary system, which cooperatively relays the incoming information to the primary users and simultaneously transmits its own data. We consider that the direct link between the primary transmitter–receiver pair uses orthogonal multiple access in the first phase. In the second phase, a secondary transmitter adopts a relaying strategy to support the direct link while it uses non-orthogonal multiple access (NOMA) to serve the secondary receiver. As a relaying scheme, we propose a piece-wise and forward (PF) relay protocol, which, depending on the absolute value of the received primary signal, acts similar to decode-and-forward (DF) and amplify-and-forward (AF) schemes in high and low signal-to-noise ratio (SNR), respectively. By doing so, PF achieves the best of these two relaying protocols using the adaptive threshold according to the transmitter-relay channel condition. Under PF-NOMA, first, we find the achievable rate region for primary and secondary receivers, and then we formulate an optimization problem to derive the optimal PF-NOMA time and power fraction that maximize the secondary rate subject to reliability constraints on both the primary and the secondary links. Our simulation results and analysis show that the PF-NOMA outperforms DF-NOMA and AF-NOMA-based relaying techniques in terms of achievable rate regions and rate-guaranteed relay locations.


2021 ◽  
Author(s):  
Binod Prasad ◽  
Gopal Chandra Das ◽  
Srinivas Nallagonda ◽  
Seemanti Saha ◽  
Abhijit Bhowmick

Abstract The performance of a relay based Half-Duplex (HD) and Full-Duplex (FD) cooperative cognitive radio (CR) network with a RF energy harvesting (EH) is studied in this paper. Co-operative environment includes a network with multiple primary users (PUs), and CRs. The relay node is considered as an EH node which harvests energy (HE) from RF signal (RFS) of source and loop-back interference. The network performance is studied for instantaneous transmission and delay constraint transmission for decode and forward (DF) relaying protocol. The performance is investigated under a relay energy outage constraint and the expression of throughput is redesigned. Expressions of energy outage, data outage and throughput for HD and FD are developed. The impact of several parameters such as transmitting SNR, fractional harvesting time parameter, fractional transmission time parameter, and loop-back interference on the system throughput has been investigated.


Cooperative Communication Systems and Relay Selection approaches are recent techniques of wireless communication system that enhance the quality of service (QoS). This research paper probes the execution of the Radio-Frequency and Free Space Optical (RF/FSO) Co-operative system using network of relays. The Co-operative relay system is typically composed of node of a source, the nodes of relays and node of a destination. The source and relay link (S-R link) follow the Generalized-K Fading distribution channel. The link connecting the relay node/device and the destination (R-D link) follows - Fading distribution channel. The relay is considered to adopt according to DF i.e Decode and Forward method of relaying and cooperatively assists in transmission to the destination node from the source node. The channel capacity is modelled using PDF (Probability Density Function) for the - distribution channel of fading for evaluation of the Dual-hop Asymmetric RF-FSO system. The performance and the analytical expressions of the new system proposed i.e. RF/FSO system were verified and validated using Monte Carlo simulation method


Sign in / Sign up

Export Citation Format

Share Document