scholarly journals Evolution of H-shaped dielectric resonator antenna for 5G applications

Author(s):  
S. Z. N. Zool Ambia ◽  
M. H. Jamaluddin ◽  
M.R. Kamarudin ◽  
J. Nasir ◽  
R.R. Selvaraju

<span>In this paper, an H-shaped Dielectric Resonator Antenna (DRA) with a Microstrip Slot Aperture (MSA) is presented and investigated at 26 GHz. In order to widen the bandwidth operation, the slot aperture feeding technique is applied. The designed DRA with relative permittivity, εr of 10 is mounted on a Duroid substrate with a relative permittivity, εr of 2.2, loss tangent of 0.0009 and a thickness of 0.254mm. The proposed antenna with overall size of 20 x 20 x 5.27 mm3 achieves good impedance matching, gain of 7.61 dB and good radiation patterns. An impedance bandwidth of 21.44%, covering the frequency range from 24.72 GHz to 30.62 GHz made the antenna has potential for millimeter wave and 5G applications.</span>

2019 ◽  
Vol 8 (3) ◽  
pp. 1047-1052
Author(s):  
Irfan Ali ◽  
Mohd Haizal Jamaluddin ◽  
M. R. Kamarudin ◽  
Abinash Gaya ◽  
R. Selvaraju

In this paper, wideband high gain dielectric resonator antenna for 5G applications is presented. Higher order mode is exploited to enhance the antenna gain, while the array of symmetrical cylindrical shaped holes drilled in the DRA to improves the bandwidth by reducing the quality factor. The proposed DRA is designed using dielectric material with relative permittivity of 10 and loss tangent of 0. 002.The Rogers RT/Droid 5880 has been selected as substrate with relative permittivity of 2.2, loss tangent of 0.0009- and 0.254-mm thickness. The simulated results show that, the proposed geometry has achieved a wide impedance bandwidth of 17.3% (23.8-28.3GHz=4.5 GHz) for S11-10 dB, and a maximum gain of about 9.3 dBi with radiation efficiency of 96% at design frequency of 26 GHz.  The DRA is feed by  microstrip transmission line with slot aperture. The reflection coefficient, the radiation pattern, and the antenna gain are studied by full-wave EM simulator CST Microwave Studio. The proposed antenna can be used for the 5G communication applications such as device to device communication (D2D).


Frequenz ◽  
2014 ◽  
Vol 0 (0) ◽  
Author(s):  
Arshad Mehmood ◽  
Yuliang Zheng ◽  
Hubertus Braun ◽  
Martun Hovhannisyan ◽  
Martin Letz ◽  
...  

AbstractThis paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A −10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
M. Kamran Saleem ◽  
M. Abdel-Rahman ◽  
Majeed Alkanhal ◽  
Abdelrazik Sebak

A novel antenna-coupled sensor configuration for millimeter wave detection is presented. The antenna is based on two cylindrical dielectric resonators (CDRs) excited by rectangular slots placed below the CDRs. TheHEM11Δmode resonating at 94 GHz is generated within the CDRs and a 3 GHz impedance bandwidth is achieved at center frequency of 94 GHz. The simulated antenna gain is 7.8 dB, with a radiation efficiency of about 40%.


2019 ◽  
Vol 8 (3) ◽  
pp. 57-63
Author(s):  
A. Zitouni ◽  
N. Boukli-Hacene

In this article, a novel T-shaped compact dielectric resonator antenna for ultra-wideband (UWB) application is presented and studied. The proposed DRA structure consists of T-shaped dielectric resonator fed by stepped microstrip monopole printed antenna, partial ground plane and an inverted L-shaped stub. The inverted L-shaped stub and parasitic strip are utilized to improve impedance bandwidth. A comprehensive parametric study is carried out using HFSS software to achieve the optimum antenna performance and optimize the bandwidth of the proposed antenna. From the simulation results, it is found that the proposed antenna structure operates over a frequency range of 3.45 to more than 28 GHz with a fractional bandwidth over 156.12%, which covers UWB application, and having better gain and radiation characteristics.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1137 ◽  
Author(s):  
Amir Altaf ◽  
Munkyo Seo

In this paper, a new dual-band circularly polarized (CP) dielectric resonator antenna for WLAN and WiMAX applications is proposed. The dielectric resonator has an asymmetric Y-shaped geometry. By properly selecting the length of the arms, the pairs of fundamental (TE 111 ) and second-order (TE 211 ) are excited separately at the design frequencies to radiate the CP wave. The measurement shows that the fabricated antenna exhibits a wide impedance bandwidth for |S 11 | < −10 dB of 62.07% (2.2–4.18 GHz). The far-field measurements in the broadside direction demonstrated a dual-band CP response with 3 dB ARBWs of 4.92%(2.38–2.5 GHz) at the lower and 12.64% (3.26–3.70 GHz) at the upper band. The measured CP bands cover the entire frequency range of WLAN (2.401–2.495 GHz) and WiMAX (3.4–3.69 GHz) at the lower and upper bands, respectively.


Author(s):  
Abinash Gaya ◽  
Mohd Haizal Jamaluddin ◽  
Irfan Ali

<span>A probe fed rectangular dielectric resonator antenna (DRA) is designed here for millimeter wave 5G applications. A wide bandwidth of 5GHz has been achieved with frequency range from 24.24GHz to 29. 20GHz. The calculated percentage banwidth is 19% centered at 26GHz. The DRA is fed by a probe with a microstrip line of unequal strip dimensions over the substrate. <br /> The measured gain of the antenna is 6.25dBi. The calculated radiation efficiency is 96%. The measured axial ratio bandwidth is from 24.08GHz to 23.90GHz, which is about 0.75 percentage bandwidth. The probe height above to the substrate is optimized to exite the DRA. The microstripline coupling is used to resonate the DRA at desizred resonating frequency. <br /> The widebandwidth with high efficiency achived here will make this antenna suitable for the 5G applications at band 30 GHz.</span>


2015 ◽  
Vol 8 (2) ◽  
pp. 335-340
Author(s):  
Seyyed Hadi Seyyedhatami ◽  
Ramazan Ali Sadeghzadeh

A new simple compact ultra-wideband (UWB) dielectric resonator antenna is presented. The antenna consists of a modified stepped microstrip-fed monopole printed antenna loaded with a rectangular dielectric resonator, truncated ground plane, and a parasitic strip underneath the dielectric resonator (DR). Using an optimized truncated ground plane and a combination of stepped feed line with DR an ultra-wide impedance bandwidth of 153% for (∣S11∣ ≤ −10 dB), covering the frequency range of (3.7–28 GHz) is achieved. The added parasitic strip can improve the radiation pattern, especially at high frequencies. The proposed antenna covers almost the entire UWB (3.1–10.6 GHz), Ku (12.4–18 GHz), and K (18–26.6 GHz) frequency bands. Also this antenna has an omnidirectional and stable radiation pattern over the whole operating frequency range and a compact size of (15 × 20 × 5.8 mm3) that make it suitable for wideband wireless system applications. This structure is light weight and can be easily fabricated. A prototype is built and measured. The simulated and measured results are in good agreement.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2694
Author(s):  
Abinash Gaya ◽  
Mohd Haizal Jamaluddin ◽  
Irfan Ali ◽  
Ayman A. Althuwayb

A novel method of feeding a dielectric resonator using a metallic circular patch antenna at millimeter wave frequency band is proposed here. A ceramic material based rectangular dielectric resonator antenna with permittivity 10 is placed over a rogers RT-Duroid based substrate with permittivity 2.2 and fed by a metallic circular patch via a cross slot aperture on the ground plane. The evolution study and analysis has been done using a rectangular slot and a cross slot aperture. The cross-slot aperture has enhanced the gain of the single element non-metallic dielectric resonator antenna from 6.38 dB from 8.04 dB. The Dielectric Resonator antenna (DRA) which is designed here has achieved gain of 8.04 dB with bandwidth 1.12 GHz (24.82–25.94 GHz) and radiation efficiency of 96% centered at 26 GHz as resonating frequency. The cross-slot which is done on the ground plane enhances the coupling to the Dielectric Resonator Antenna and achieves maximum power radiation along the broadside direction. The slot dimensions are further optimized to achieve the desired impedance match and is also compared with that of a single rectangular slot. The designed antenna can be used for the higher frequency bands of 5G from 24.25 GHz to 27.5 GHz. The mode excited here is characteristics mode of TE1Y1. The antenna designed here can be used for indoor small cell applications at millimeter wave frequency band of 5G. High gain and high efficiency make the DRA designed here more suitable for 5G indoor small cells. The results of return loss, input impedance match, gain, radiation pattern, and efficiency are shown in this paper.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3801
Author(s):  
Mohsen Niayesh ◽  
Ammar Kouki

A millimeter-wave dielectric resonator antenna array with an integrated feeding network and a novel alignment superstrate in Low Temperature Cofired Ceramics (LTCC) technology is presented. The antenna array consists of 16 cylindrical DR antenna (CDRA) elements operating at 28 GHz for mm-Wave 5G applications. The array is fed by an inverted microstrip corporate feeding network designed and built in the same LTCC stack as the resonators. A grooved and grounded superstrate is introduced to facilitate the alignment of the individual array elements while enhancing the overall performance of the antenna array. The performance of the proposed stack is evaluated numerically and compared with measured data. Measured results show an impedance bandwidth of 9.81% at 28.72 GHz with a maximum realized gain of 15.68 dBi and an efficiency of 88%, and are in excellent agreement with simulations.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 191-199
Author(s):  
M. K. Verma ◽  
Binod K. Kanaujia ◽  
J. P. Saini ◽  
Padam S. Saini

AbstractA broadband circularly polarized slotted square patch antenna with horizontal meandered strip (HMS) is presented and studied. The HMS feeding technique provides the good impedance matching and broadside symmetrical radiation patterns. A set of cross asymmetrical slots are etched on the radiating patch to realize the circular polarization. An electrically small stub is added on the edge of the antenna for further improvement in performance. Measured 10-dB impedance bandwidth (IBW) and 3-dB axial ratio bandwidth (ARBW) of the proposed antenna are 32.31 % (3.14–4.35 GHz) and 20.91 % (3.34–4.12 GHz), respectively. The gain of the antenna is varied from 3.5 to 4.86dBi within 3-dB ARBW. Measured results matched well with the simulated results.


Sign in / Sign up

Export Citation Format

Share Document