scholarly journals Gateway sink placement for sensor node grid distribution in lora smart city networks

Author(s):  
Nur Aishah Bt. Zainal ◽  
Mohamed Hadi Habaebi ◽  
Israth Jahan Chowdhury ◽  
Md Rafiqul Islam ◽  
Jamal I. Daoud

<span>Low Power Wide Area Network (LPWAN) is a type of wireless communication network designed to allow long range communications at a low bit rate among things (connected objects), such as sensors operated on a battery. It is a new technology that operates in unauthorized spectrum which designed for wireless data communication [1]. It is used in Internet of Thing (IoT) applications and M2M communications. It provides multi-year battery lifetime and is intended for sensors and applications that need to transmit only a few information over long distances a few times per hour from different environments. In order to have an insight of such long range technology, this paper evaluates the performance of LoRa radio links under shadowing effect and realistic smart city utilities node grid distribution. Such environment is synonymous to residential, industrial and modern urban centers. The focus is to include the effect of shadowing on the radio links while attempting to study the optimum sink node numbers and their locations for maximum sensor node connectivity. Results indicate that the usual unrealistic random node distribution does not reflect actual real-life scenario where many of the these sensing nodes follow the utilities infrastructure around the city (e.g., street light posts, water and gas delivery pipes,…etc). The system is evaluated in terms of connectivity and packet loss ratio.</span>

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3374 ◽  
Author(s):  
Fowzia Akhter ◽  
Sam Khadivizand ◽  
Hasin Reza Siddiquei ◽  
Md Eshrat E. Alahi ◽  
Subhas Mukhopadhyay

An Internet of Things (IoT) enabled intelligent sensor node has been designed and developed for smart city applications. The fabricated sensor nodes count the number of pedestrians, their direction of travel along with some ambient parameters. The Field of View (FoV) of Fresnel lens of commercially available passive infrared (PIR) sensors has been specially tuned to monitor the movements of only humans and no other domestic animals such as dogs, cats etc. The ambient parameters include temperature, humidity, pressure, Carbon di Oxide (CO2) and total volatile organic component (TVOC). The monitored data are uploaded to the Internet server through the Long Range Wide Area Network (LoRaWAN) communication system. An intelligent algorithm has been developed to achieve an accuracy of 95% for the pedestrian count. There are a total of 74 sensor nodes that have been installed around Macquarie University and continued working for the last six months.


BWK ENERGIE. ◽  
2019 ◽  
Vol 71 (05) ◽  
pp. 24-25
Author(s):  
Steffen Heudtlaß

INTERNET OF THINGS | Ob Smart Home, Smart Building oder Smart City – Stadtwerke sollten die neuen Betätigungsfelder mithilfe der Long-Range-Wide-Area-Network (LoRaWAN)-Funktechnologie rasch besetzen, rät Steffen Heudtlaß, bei der MeterPan GmbH verantwortlicher Geschäftsentwickler. Das Unternehmen aus Norderstedt unterstützt Versorger beim Schritt in die Welt des Internet of Things (IoT).


Author(s):  
Nur Aishah Bt. Zainal ◽  
Mohamed Hadi Habaebi ◽  
Israth Chowdhury ◽  
Md Rafiqul Islam

<p>Low Power WAN (LPWAN) is a wireless broad area network technology. It is interconnects using only low bandwidth, less power consumption at long range. This technology is operating in unauthorized spectrum which designed for wireless data communication. To have an insight of such long-range technology, this paper evaluates the performance of LoRa radio links under shadowing effect and realistic smart city utilities clutter grid distribution. Such environment is synonymous to residential, industrial and modern urban centers. The focus is to include the effect of shadowing on the radio links while attempting to study the optimum sink node numbers and their locations for maximum sensor node connectivity. Results indicate that the usual unrealistic random node distribution does not reflect actual real-life scenario where many of these sensing nodes follow the built infrastructure around the city of smart buildings. The system is evaluated in terms of connectivity and packet loss ratio.</p>


2021 ◽  
Author(s):  
Husam Rajab ◽  
Tibor Cinkler ◽  
Taoufik Bouguera

Abstract The modern technological innovations provide small radios with ability to broadcast over vast areas with minimum energy consumption that will significantly influence the future of the Internet of Things (IoT) communications. The majority of IoT implementations demand sensor nodes run reliably for an extended time. Furthermore, the radio settings can endure a high data rate transmission while optimizing the energy-efficiency. The LoRa/LoRaWAN is one of the primary Low-Power Wide Area Network (LPWAN) technology that has highly enticed much concentration recently from the community. The energy limits is a significant issue in wireless sensor networks since battery lifetime that supplies sensor nodes have a restricted amount of energy and neither expendable nor rechargeable in most cases. A common hypothesis in previous work is that the energy consumed by sensors in sleep mode is negligible. With this hypothesis, the usual approach is to consider subsets of nodes that reach all the iterative targets. These subsets also called coverage sets, are then put in the active mode, considering the others are in the low-power or sleep mode. In this paper, we address this question by proposing an energy consumption model based on LoRa and LoRaWAN, that model optimizes the energy consumption of the sensor node for different tasks for a period of time. The proposed analytical approach permits considering the consumed power of every sensor node element; furthermore, it can be used to analyse different LoRaWAN modes to determine the most desirable sensor node design to reach its energy autonomy.


BWK ENERGIE. ◽  
2019 ◽  
Vol 71 (01-02) ◽  
pp. 14-14

SMART CITY | Internet-of-Things (IoT)-Technologien wie Long Range Wide Area Network (LoRaWAN) erobern die Städte. Ein klassisches Einsatzfeld ist die Parkraumüberwachung. Die Funklösung kann beispielsweise zuverlässig verhindern, dass Falschparker im Ernstfall Rettungswege oder Feuerwehrzufahrten von Gebäuden und öffentlichen Einrichtungen blockieren.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Nicoleta Cristina Gaitan

Recent market studies show that the market for remote monitoring devices of different medical parameters will grow exponentially. Globally, more than 4 million individuals will be monitored remotely from the perspective of different health parameters by 2023. Of particular importance is the way of remote transmission of the information acquired from the medical sensors. At this time, there are several methods such as Bluetooth, WI-FI, or other wireless communication interfaces. Recently, the communication based on LoRa (Long Range) technology has had an explosive development that allows the transmission of information over long distances with low energy consumption. The implementation of the IoT (Internet of Things) applications using LoRa devices based on open Long Range Wide-Area Network (LoRaWAN) protocol for long distances with low energy consumption can also be used in the medical field. Therefore, in this paper, we proposed and developed a long-distance communication architecture for medical devices based on the LoRaWAN protocol that allows data communications over a distance of more than 10 km.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Nur-A-Alam ◽  
Mominul Ahsan ◽  
Md. Abdul Based ◽  
Julfikar Haider ◽  
Eduardo M. G. Rodrigues

In the era of Industry 4.0, remote monitoring and controlling appliance/equipment at home, institute, or industry from a long distance with low power consumption remains challenging. At present, some smart phones are being actively used to control appliances at home or institute using Internet of Things (IoT) systems. This paper presents a novel smart automation system using long range (LoRa) technology. The proposed LoRa based system consists of wireless communication system and different types of sensors, operated by a smart phone application and powered by a low-power battery, with an operating range of 3–12 km distance. The system established a connection between an android phone and a microprocessor (ESP32) through Wi-Fi at the sender end. The ESP32 module was connected to a LoRa module. At the receiver end, an ESP32 module and LoRa module without Wi-Fi was employed. Wide Area Network (WAN) communication protocol was used on the LoRa module to provide switching functionality of the targeted area. The performance of the system was evaluated by three real-life case studies through measuring environmental temperature and humidity, detecting fire, and controlling the switching functionality of appliances. Obtaining correct environmental data, fire detection with 90% accuracy, and switching functionality with 92.33% accuracy at a distance up to 12 km demonstrated the high performance of the system. The proposed smart system with modular design proved to be highly effective in controlling and monitoring home appliances from a longer distance with relatively lower power consumption.


Mekatronika ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 52-62
Author(s):  
Kwai Yang Sak ◽  
Ahmad Najmuddin Ibrahim

Long Range (LoRa) is a wireless radio frequency technology under the Low Power Wide Area Network (LPWAN). LoRa is able to communicate long range and low energy consumption. The communication range has become an essential element in the wireless radio frequency technology in the Internet of Things (IoT). The presence of LoRa is able IoT application performs in long communication distances with high noise sensitivity ability. People can operate, monitor, and do a variety of tasks from a remote distance. Therefore, this research aims to evaluate the performance of the LoRa connection between radio transceivers in remote locations. The different environment and structural elements affect the LoRa performance. This thesis will be supported by the experiment that LoRa communication in different environments and tests. This experiment tests in line of sight (LOS) and non-line of sight (NLOS). Two sets of LoRa parameters, including Spreading Factor (SF), Bandwidth, and coding rate, are tested in different environments. The experiment tests the LoRa performance in various aspects: received signal strength indicator (RSSI) and packet received ratio (PPR) at different coverage ranges. In addition, the LoRa performance is evaluated in university, residential areas and vegetation areas under similar temperature, weather, and time. The LoRa coverage distance in the vegetation area and university area is reached 900 meters in the LOS test. Still, the vegetation area's signal is more stable and able to receive weaker RSSI signals. The LoRa coverage distance in the NLOS test is shorter compared to the LOS test. NLOS test has only one-third of the LOS LoRa communication distance. It is due to the signal penetration on structural elements such as buildings and woods cause the signal power loss and only transmitting a shorter distance. The LoRa parameter with SF9, 31.25kHz bandwidth and 4/8 coding rate has a better coverage range and stable connection.


Sign in / Sign up

Export Citation Format

Share Document