scholarly journals Electromagnetic nonlinear parametric study of the SynRM using FEM method

Author(s):  
Benessalah Djamel ◽  
Houassine Hamza ◽  
Nadir Kabache ◽  
Moussaoui Djeloul

<span lang="EN-US">The interest in synchronous reluctance machine (SynRM) does not stop increasing in recent decades; this is encouraged by their numerous advantages. This paper presents a nonlinear parametric study of the SynRM using finite element method (FEM) method. After a brief introduction and a description of the basic principles of SynRM an investigation and an evaluation of the effects of some influential parameters’ variables of the machine on the torque and magnetic losses is highlighted. The SynRM is created using ANSYS Maxwell software, using 2D FEM. The analyses are performed in the ANSYS Maxwell. The influence of the thickness of the air gap, the opening angle of the rotor, the width and the height of the stator tooth are listed and discussed. The obtained results reveals that the opening angle of the rotor and the air gap produces a large effect over the torque of the SynRM. In order to validate, the finite element model of the studied machine, experimental tests were carried out on designed machine such as the measurement of the synchronous inductance, the torque and the different losses. The experimental results are in agreement with those obtained by FEM.</span>

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3346
Author(s):  
Bora Gencturk ◽  
Hadi Aryan ◽  
Mohammad Hanifehzadeh ◽  
Clotilde Chambreuil ◽  
Jianqiang Wei

In this study, an investigation of the shear behavior of full-scale reinforced concrete (RC) beams affected from alkali–silica reactivity damage is presented. A detailed finite element model (FEM) was developed and validated with data obtained from the experiments using several metrics, including a force–deformation curve, rebar strains, and crack maps and width. The validated FEM was used in a parametric study to investigate the potential impact of alkali–silica reactivity (ASR) degradation on the shear capacity of the beam. Degradations of concrete mechanical properties were correlated with ASR expansion using material test data and implemented in the FEM for different expansions. The finite element (FE) analysis provided a better understanding of the failure mechanism of ASR-affected RC beam and degradation in the capacity as a function of the ASR expansion. The parametric study using the FEM showed 6%, 19%, and 25% reduction in the shear capacity of the beam, respectively, affected from 0.2%, 0.4%, and 0.6% of ASR-induced expansion.


2010 ◽  
Vol 24-25 ◽  
pp. 25-41 ◽  
Author(s):  
Keith Worden ◽  
W.E. Becker ◽  
Manuela Battipede ◽  
Cecilia Surace

This paper concerns the analysis of how uncertainty propagates through large computational models like finite element models. If a model is expensive to run, a Monte Carlo approach based on sampling over the possible model inputs will not be feasible, because the large number of model runs will be prohibitively expensive. Fortunately, an alternative to Monte Carlo is available in the form of the established Bayesian algorithm discussed here; this algorithm can provide information about uncertainty with many less model runs than Monte Carlo requires. The algorithm also provides information regarding sensitivity to the inputs i.e. the extent to which input uncertainties are responsible for output uncertainty. After describing the basic principles of the Bayesian approach, it is illustrated via two case studies: the first concerns a finite element model of a human heart valve and the second, an airship model incorporating fluid structure interaction.


2015 ◽  
Vol 1 (1) ◽  
pp. 507-509
Author(s):  
H. Martin ◽  
N. Gutteck ◽  
J.-B. Matthies ◽  
T. Hanke ◽  
G. Gradl ◽  
...  

AbstractIn order to demonstrate the influence of the boundary conditions in experimental biomechanical investigations of arthrodesis implants two different models were investigated. As basic model, a simplified finite element model of the cortical bone was used in order to compare the stress values with (Model 1) and without (Model 2) allowing horizontal displacements of the load application point. The model without constraints of horizontal displacements showed considerably higher stress values at the point of failure. Moreover, this investigation shows that the boundary conditions (e.g. constraints) have to be carefully considered, since simplifications of the reality with experimental tests cannot always be avoided.


Author(s):  
Jean-Jacques Sinou ◽  
David Demailly ◽  
Cristiano Villa ◽  
Fabrice Thouverez ◽  
Michel Massenzio ◽  
...  

This paper presents a research devoted to the study of vibration problems in turbofan application. Several numerical and experimental tools have been developed. An experimental test rig that simulates the vibrational behavior of a turbofan engine is presented. Moreover, a finite element model is used in order to predict the non-linear dynamic behavior of rotating machines and to predict the first critical speed of engineering machine. A comparison between the experimental tests and the numerical model is conducted in order to evaluate the critical speed of the rotating structure and to update the finite element model.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Mehmet Emin Taşdelen ◽  
Mehmet Halidun Keleştemur ◽  
Ercan Şevkat

Braided sleeve composite shafts are produced and their torsional behavior is investigated. The braided sleeves are slid over an Al tube to create very strong and rigid tubular form shafts and they are in the form of 2/2 twill biaxial fiber fabric that has been woven into a continuous sleeve. Carbon and glass fibers braided sleeves are used for the fabrication of the composite shafts. VARTM (vacuum assisted resin transfer molding) and Vacuum Bagging are the two different types of manufacturing methods used in the study. Torsional behaviors of the shafts are investigated experimentally in terms of fabrication methods and various composite materials parameters such as fiber types, layer thickness, and ply angles. Comparing the two methods in terms of the torque forces and strain angles, the shafts producing entirely carbon fiber show the highest torque capacities; however, considering the cost and performance criteria, the hybrid shaft made up of carbon and glass fibers is the optimum solution for average demanded properties. Additionally, FE (finite element) model of the shafts was created and analyzed by using ANSYS workbench environment. Results of finite element analysis are compared with the values of twisting angle and torque obtained by experimental tests.


Author(s):  
Chris Bassindale ◽  
Xin Wang ◽  
William R. Tyson ◽  
Su Xu

Abstract In this work, the cohesive zone model (CZM) was used to examine the transferability of the crack tip opening angle (CTOA) from small-scale to full-scale geometries. The pipe steel STPG370 was modeled. A drop-weight tear test (DWTT) model and pipe model were studied using the finite element code ABAQUS 2017x. The cohesive zone model was used to simulate crack propagation in 3D. The CZM parameters were calibrated based on matching the surface CTOA measured from a DWTT finite element model to the surface CTOA measured from the experimental DWTT specimen. The mid-thickness CTOA of the DWTT model was in good agreement with the experimental value determined from E3039 and the University of Tokyo group’s load-displacement data. The CZM parameters were then applied to the pipe model. The internal pressure distribution and decay during the pipe fracture process was modeled using the experimental data and implemented through a user-subroutine (VDLOAD). The mid-thickness CTOA from the DWTT model was similar to the mid-thickness CTOA from the pipe model. The average surface CTOA of the pipe model was in good agreement with the average experimental value. The results give confidence in the transferability of the CTOA between small-scale specimens and full-scale pipe.


2017 ◽  
Vol 754 ◽  
pp. 59-62 ◽  
Author(s):  
Felipe Vannucchi de Camargo ◽  
Ana Pavlovic

Several investigations regarding the mechanical behaviour of composites reinforced by natural fibers under impact have been realized recently, aiming at achieve a low-weight and resistant design. At the same time, progressively accurate results on numerical simulations have been reached powered by modern Finite Element Method (FEM) approaches for composites; however, demonstrating a faithful indentation pattern is still a challenge. The present work aims at building an impact numerical simulation that exhibits a fracture mechanism exactly like the one seen in experimental tests, also carried in this work, on a Basalt Reinforced Composite Polymer (BRFP) plate subjected to low-velocity falling weight impact (IFW). The FEM simulation describes a multiphase model considering each ply and their inter-layer interactions.


2017 ◽  
Vol 23 (7) ◽  
pp. 868-879 ◽  
Author(s):  
Ivan GLIŠOVIĆ ◽  
Marko PAVLOVIĆ ◽  
Boško STEVANOVIĆ ◽  
Marija TODOROVIĆ

This paper presents an analysis of bending behaviour of glued laminated timber (glulam) beams reinforced with carbon fibre reinforced polymer (CFRP) plates, based on finite element numerical modelling. Nonlinear 3-dimen­sional model was developed and validated by experimental tests carried out on unreinforced beams and beams reinforced with two different reinforcement arrangements. Suitable constitutive relationships for each material were utilised in the model, as well as anisotropic plasticity theory for timber in compression. Adhesive bond between CFRP plate and timber was modelled as a perfect connection. Beam failure in the model was defined by maximum stress criterion. The predicted behaviour of beams has shown good agreement with the experimental results in relation to load-deflection relationship, ultimate load, elastic stiffness and strain profile distribution. The non-linear behaviour of reinforced beams before failure was also achieved in the numerical analysis, confirming the finite element model to be accurate past the linear-elastic range. Experimentally tested reinforced beams usually failed in tensile zone after compressive plasticiza­tion of top lamination, which was also simulated in the numerical model. The results proved that the load carrying ca­pacity, stiffness and ductility of glulam beams were successfully increased by addition of CFRP plate at tension side of the section.


Author(s):  
Farzad Tasbihgoo ◽  
John P. Caffrey ◽  
Sami F. Masri

For the past several years, USC has been involved in a major research project to study the seismic mitigation measures of nonstructural components in hospitals funded by the Federal Emergency Management Agency (FEMA). It was determined that piping was the one of the most critical components affecting the functionality of a hospital following an earthquake. Consequently, a substantial effort was spent on quantifying the behavior of typical piping components. During the loading of the threaded joint, it was common to hear a loud popping sound, followed by a small water leak. It was assumed that the sound and leakage were due to the sliding of the mating pipe threads. To confirm this theory, and to provide a tool to help understand the failure mode(s) for a wide class of threaded fittings, a detailed nonlinear finite element model was constructed using MSC/NASTRAN, and correlated to the measured failures. In this paper, a simplified model is presented first to demonstrate the modeling procedure and to help understand the sliding phenomenon. Next, a symmetric half 3D model was generated for modeling the physical experiments. It is shown that the finite element analysis (FEA) of the threaded connections captures the dominant mechanism that was observed in the experimental tests.


Sign in / Sign up

Export Citation Format

Share Document