Comparison of Five Level and Seven Level Inverter Based Static Compensator System

Author(s):  
G. Ramya ◽  
V. Ganapathy

<p>The STATCOM is one of the shunt type FACTS controllers which can supply reactive power and improve bus voltage. STATCOM has advantages like transient free switching and smooth variation of reactive power. This paper deals with the comparison of five level and seven level based STATCOM systems. Usually DC output from the PV source is amplified using a single boost converter. The output of the boost converter is applied to the multilevel inverter system. The ability of STATCOM to improve the receiving end voltage is analyzed using the proposed boost converter. The performance of five level and seven level STATCOM systems are compared in terms of THD and receiving end voltage</p>

Author(s):  
G. Ramya ◽  
V. Ganapathy ◽  
P. Suresh

STATCOM is one of the shunt type FACTS controllers which can supply reactive power and improve bus voltage. STATCOM, a controlling device used on alternating current transmission networks, has advantages like transient free switching and smooth variation of reactive power. This paper proposes a cascaded multilevel inverter type DSTATCOM and DVR to compensate voltage sag in utilities in power distribution network. The proposed DSTATCOM is implemented using multilevel topology with isolated dc energy storage and reduced number of switches. A DVR injects a voltage in series with the system voltage and a D-STATCOM implant a current into the system to correct the voltage sag, swell and interruption. The phase shifter PWM technique is described to generate firing pulse to cascaded inverter. The proposed neuro-fuzzy controller follow itself to the sag and provides effective means of mitigation. The voltage sag with the minimum harmonic at the efficacy end. The proposed technique is simulated using MATLAB/Simulink.


2021 ◽  
Vol 54 (1) ◽  
pp. 1-8
Author(s):  
Abdelkader Boudali ◽  
Karim Negadi ◽  
Sarah Bouradi ◽  
Abderrahmane Berkani ◽  
Fabrizio Marignetti

In this paper, renewable hydropower plant generators with permanent magnet synchronous generator are coupled via a diode bridge rectifier - DC/DC boost converter and three-phase inverter to a power grid. This paper studies a new control structure focused a backstepping control of the energy generation system.The proposed methods for adjusting the active and reactive power by adjusting the currents, the DC bus voltage on the main side converter, as well as the voltage at the output of the DC-DC boost converter. The main objective of this control is to obtain purely sinusoidal and symmetrical grid current signals, to suppress oscillations in reactive power and to cancel active power chattering in the event of grid imbalance. In order to optimize the energy flow in the different parts of the production process, an energy control algorithm is developed in order to attenuate the fluctuations in the water flow, the grid system of the hydropower plant considered has been implemented in Matlab/Simulink, the results show the effectiveness of the proposed method. To analyze our approach, a prototype is modeled, simulated and can be performed in an experimental test setup.


A huge review on greatest allocation of Distribution Static Compensator (DSTATCOM) strategies in Radial Distribution system (RDS) device for compensation of reactive power (Q), mitigation of electricity losses and enhancement in voltage profile is presented. DSTATCOM compensates bus voltage to restriction the strength factor, in addition with energetic and additionally reactive power flows in the RDS. It can additionally provide immediate and non-stop capacitive (C) and inductive (L) mode compensation. This system also injects quantity of lead or lagging compensating current, when it is connected with a same load or varying load. Various IEEE buses are used for checking the achievability of the optimization methods in distribution system. In few papers the presented approach is evaluated through evaluating it with previous techniques and benefits are shown by means of simulation results.


Author(s):  
Balaram Das ◽  
Pratap K. Panigrahi ◽  
Soumya R. Das ◽  
Debani P. Mishra ◽  
Surender Reddy Salkuti

Abstract The increasing use of power electronics devices as well as the integration of renewable source-based microgrids (MG) has seriously affects the power quality (PQ) of the three-phase power system. Therefore, for the improvement of PQ, it is required to reduce the total harmonics distortion (THD) in the utility network. In this work, the improvement of PQ is discussed in a photovoltaic (PV) based MG integrated three-phase system using a three-level H-bridge (3LHB) multilevel inverter (MI). The MI is used for compensating the source current harmonics and reducing the THD by meeting the IEEE standard guidelines. Besides, the proposed model helps manage the reactive power with control of DC link bus voltage through the PV system. The proposed model is helpful not only in reducing the harmonics but also in providing additional active power to the load if any electrical disturbances occur on the grid side. The maximum power point tracking (MPPT) technique employed in PV is of an improved form of Perturb and Observe (P&O). Further, the reference current generation is derived using the direct current control (DCC) and indirect current control (ICC) techniques. The MG integrated MI is investigated in both DCC and ICC method using three different DC bus voltage controllers; proportional-integral (PI), fuzzy logic controller (FLC), and fuzzy sliding mode control (FSMC). The proposed microgrid integrated system is analyzed with the MATLAB/Simulink tool.


2021 ◽  
Author(s):  
Venkata Narasimha Rao Yaramasu

This dissertation proposes two novel medium voltage (MV) multilevel converter configurations for use with permanent magnet synchronous generator (PMSG) based megawatt (MW) wind energy conversion systems (WECS). The classical control techniques, based on linear PI regulators and low band-width modulation, present several technical issues during lower switching frequency operation. To overcome these issues, a high performance finite control-set model predictive control (FCS-MPC) strategy is proposed to control the power converters employed in the MW-PMSG-WECS. The proposed three-level and four-level converters combine the advantages of proven wind turbine technologies, such as low-cost generator-side passive converters, and efficient gridside multilevel converters. The intermediate dc-dc multilevel converters ensure balancing of the capacitor voltages during all operating conditions. With this feature, the grid-side multilevel converters produce better grid current waveforms compared to the back-to-back connected converters. A generalized approach for the predictive control of an n-level diode-clamped converter was investigated. The FCS-MPC strategy for current control and decoupled active/reactive power regulation of grid-connected multilevel converters was also analyzed. The major WECS requirements such as maximum power point tracking, balancing of dc-link capacitor voltages, switching frequency minimization, common-mode voltage mitigation, regulation of net dc-bus voltage, and grid reactive power control have been modeled in terms of power converter switching states. These control objectives have been accomplished during each sampling interval by selecting the switching states which minimize the generator- and grid-side cost functions. Issues related to the weighting factors selection, control delay compensation, accurate extrapolation of references, control of variable switching frequency nature, prediction of variables over two samples with reduced computational burden, and robustness analysis, are also addressed in this dissertation. To keep the dc-bus voltage constant during low voltage ride-through operation, predictive control scheme is proposed for the power converters while storing surplus energy in the turbine-generator rotor inertia. The generation and exchange of reference control variables during symmetrical grid voltage dips is suggested to meet the grid code requirements. The proposed solution is efficient as no energy is dissipated in the dc-link crowbar. The simulation and experimental results validate the proposed MV converters and predictive control schemes.


2011 ◽  
Vol 55-57 ◽  
pp. 1361-1364
Author(s):  
Jun Li Zhang ◽  
Xiao Feng Lv ◽  
Chao Li

With the growth of industry manufacturers and population, power quality becomes more and more important issue, and is attracting significant attention due to the increase in the number of sensitive loads. A distribution static compensator (DSTATCOM) is a voltage source inverter (VS1)-based power electronic device, which is usually used to compensate reactive power and sustain the system voltage in distribution power system. Compared with the traditional STATCOM, multilevel STATCOMs exhibit faster dynamic response, smaller volume, lower cost, and higher ratings. A multilevel inverter connected to an energy storage device can control both active and reactive power flow, providing more flexible and versatile power transmission operation. SPWM is actually a kind of multi-pulse trigger mode and used to trigger the switches in DSTATCOM.


Author(s):  
Anuj Singh ◽  
Dr. Sandeep Sharma ◽  
Karan Sharma ◽  
Flansha Jain ◽  
Shreyanshu Kumar Jena

A Power System is actually a vast system that requires an outstanding plan for maintaining the continual flow of electricity. When a fault occurs at the power system, number of difficulties arises because of transients in system. so to attenuate these transients, power electronics based devices like FACTS are utilized. A unified power flow controller (UPFC) is one among different power electronics controller which can dispense VAR compensation, line impedance control and phase shifting. The thought is to see potential of UPFC to require care of active and reactive power movement within the compensated line (including UPFC) and to shrink the falloff of the bus voltage in case of grounding fault within the cable. power system block consisting of simulink is used for numerical analysis. Simulation outcomes from MATLAB reflects major improvement in the overall system’s behaviour with UPFC in sustain the voltage and power flow even under severe line faults by proper injection of series voltage into the cable at the point of connection. outcomes shows how the UPFC contributes effectively to a faster regaining of the power system to the pre-fault conditions.


Author(s):  
Pallavi Thakkur ◽  
Smita Shandilya

Self-Excited Induction Generator (SEIG) offers many advantages such as low cost, simplicity, robust construction, self-protection against faults and maintenance free in today's renewable energy industry. However, the SEIG demands an external supply of reactive power to maintain the constant terminal voltage under the varying loading conditions, which limits the application of SEIG as a standalone power generator. The regulation of speed and voltage does not result in a satisfactory improvement although several studies have been emphasized on this topic in the past. To improve the performance of the SEIG system in isolated areas and to regulate the terminal voltage STATic COMpensator (STATCOM) has been modelled and developed in this dissertation. The STATCOM consists of AC inductors, a DC bus capacitor and solid-state self-commutating devices. The ratings of these components are quite important for designing and controlling of STATCOM to maintain the constant terminal voltage. The proposed generating system is modelled and simulated in MATLAB along with Simulink and sim power system block set toolboxes. The simulated results are presented to demonstrate the capability of an isolated power generating system for feeding three-phase resistive loads.


Sign in / Sign up

Export Citation Format

Share Document