scholarly journals Research on an Urban Building Area Extraction Method with High-Resolution PolSAR Imaging Based on Adaptive Neighborhood Selection Neighborhoods for Preserving Embedding

2020 ◽  
Vol 9 (2) ◽  
pp. 109 ◽  
Author(s):  
Bo Cheng ◽  
Shiai Cui ◽  
Xiaoxiao Ma ◽  
Chenbin Liang

Feature extraction of an urban area is one of the most important directions of polarimetric synthetic aperture radar (PolSAR) applications. A high-resolution PolSAR image has the characteristics of high dimensions and nonlinearity. Therefore, to find intrinsic features for target recognition, a building area extraction method for PolSAR images based on the Adaptive Neighborhoods selection Neighborhood Preserving Embedding (ANSNPE) algorithm is proposed. First, 52 features are extracted by using the Gray level co-occurrence matrix (GLCM) and five polarization decomposition methods. The feature set is divided into 20 dimensions, 36 dimensions, and 52 dimensions. Next, the ANSNPE algorithm is applied to the training samples, and the projection matrix is obtained for the test image to extract the new features. Lastly, the Support Vector machine (SVM) classifier and post processing are used to extract the building area, and the accuracy is evaluated. Comparative experiments are conducted using Radarsat-2, and the results show that the ANSNPE algorithm could effectively extract the building area and that it had a better generalization ability; the projection matrix is obtained using the training data and could be directly applied to the new sample, and the building area extraction accuracy is above 80%. The combination of polarization and texture features provide a wealth of information that is more conducive to the extraction of building areas.

2021 ◽  
Vol 11 (10) ◽  
pp. 2558-2565
Author(s):  
K. Kavinkumar ◽  
T. Meeradevi

Brain tumors Analysis is problematic somewhat due to varied size, shape, location of tumor and the appearance and presence of brain tumor. Clinicians and radiologist have difficulty in identifying the tumor type. An efficient hybrid feature extraction method to classify the type of tumor accurately as meningioma, gliomas and pituitary tumor using SVM (support vector machine) classifier is proposed. The modified Non-Local Means (NLM) filter may be effectively used to get the pure image. The NLM filter is compared with common filters like median and wiener. From the denoised image the classification is done by training SVM using the texture features from the hybrid and efficient feature extraction technique.The accuracy of the classification is calculated and the SVM classifier training individual type of texture features and also with combined texture features and the performance is analyzed.


Author(s):  
Htwe Pa Pa Win ◽  
Phyo Thu Thu Khine ◽  
Khin Nwe Ni Tun

This paper proposes a new feature extraction method for off-line recognition of Myanmar printed documents. One of the most important factors to achieve high recognition performance in Optical Character Recognition (OCR) system is the selection of the feature extraction methods. Different types of existing OCR systems used various feature extraction methods because of the diversity of the scripts’ natures. One major contribution of the work in this paper is the design of logically rigorous coding based features. To show the effectiveness of the proposed method, this paper assumed the documents are successfully segmented into characters and extracted features from these isolated Myanmar characters. These features are extracted using structural analysis of the Myanmar scripts. The experimental results have been carried out using the Support Vector Machine (SVM) classifier and compare the pervious proposed feature extraction method.


2020 ◽  
Vol 12 (7) ◽  
pp. 1218
Author(s):  
Laura Tuşa ◽  
Mahdi Khodadadzadeh ◽  
Cecilia Contreras ◽  
Kasra Rafiezadeh Shahi ◽  
Margret Fuchs ◽  
...  

Due to the extensive drilling performed every year in exploration campaigns for the discovery and evaluation of ore deposits, drill-core mapping is becoming an essential step. While valuable mineralogical information is extracted during core logging by on-site geologists, the process is time consuming and dependent on the observer and individual background. Hyperspectral short-wave infrared (SWIR) data is used in the mining industry as a tool to complement traditional logging techniques and to provide a rapid and non-invasive analytical method for mineralogical characterization. Additionally, Scanning Electron Microscopy-based image analyses using a Mineral Liberation Analyser (SEM-MLA) provide exhaustive high-resolution mineralogical maps, but can only be performed on small areas of the drill-cores. We propose to use machine learning algorithms to combine the two data types and upscale the quantitative SEM-MLA mineralogical data to drill-core scale. This way, quasi-quantitative maps over entire drill-core samples are obtained. Our upscaling approach increases result transparency and reproducibility by employing physical-based data acquisition (hyperspectral imaging) combined with mathematical models (machine learning). The procedure is tested on 5 drill-core samples with varying training data using random forests, support vector machines and neural network regression models. The obtained mineral abundance maps are further used for the extraction of mineralogical parameters such as mineral association.


2018 ◽  
Vol 10 (7) ◽  
pp. 1123 ◽  
Author(s):  
Yuhang Zhang ◽  
Hao Sun ◽  
Jiawei Zuo ◽  
Hongqi Wang ◽  
Guangluan Xu ◽  
...  

Aircraft type recognition plays an important role in remote sensing image interpretation. Traditional methods suffer from bad generalization performance, while deep learning methods require large amounts of data with type labels, which are quite expensive and time-consuming to obtain. To overcome the aforementioned problems, in this paper, we propose an aircraft type recognition framework based on conditional generative adversarial networks (GANs). First, we design a new method to precisely detect aircrafts’ keypoints, which are used to generate aircraft masks and locate the positions of the aircrafts. Second, a conditional GAN with a region of interest (ROI)-weighted loss function is trained on unlabeled aircraft images and their corresponding masks. Third, an ROI feature extraction method is carefully designed to extract multi-scale features from the GAN in the regions of aircrafts. After that, a linear support vector machine (SVM) classifier is adopted to classify each sample using their features. Benefiting from the GAN, we can learn features which are strong enough to represent aircrafts based on a large unlabeled dataset. Additionally, the ROI-weighted loss function and the ROI feature extraction method make the features more related to the aircrafts rather than the background, which improves the quality of features and increases the recognition accuracy significantly. Thorough experiments were conducted on a challenging dataset, and the results prove the effectiveness of the proposed aircraft type recognition framework.


2018 ◽  
Vol 10 (11) ◽  
pp. 1704 ◽  
Author(s):  
Wei Wu ◽  
Qiangzi Li ◽  
Yuan Zhang ◽  
Xin Du ◽  
Hongyan Wang

Urban surface water mapping is essential for studying its role in urban ecosystems and local microclimates. However, fast and accurate extraction of urban water remains a great challenge due to the limitations of conventional water indexes and the presence of shadows. Therefore, we proposed a new urban water mapping technique named the Two-Step Urban Water Index (TSUWI), which combines an Urban Water Index (UWI) and an Urban Shadow Index (USI). These two subindexes were established based on spectral analysis and linear Support Vector Machine (SVM) training of pure pixels from eight training sites across China. The performance of the TSUWI was compared with that of the Normalized Difference Water Index (NDWI), High Resolution Water Index (HRWI) and SVM classifier at twelve test sites. The results showed that this method consistently achieved good performance with a mean Kappa Coefficient (KC) of 0.97 and a mean total error (TE) of 2.28%. Overall, classification accuracy of TSUWI was significantly higher than that of the NDWI, HRWI, and SVM (p-value < 0.01). At most test sites, TSUWI improved accuracy by decreasing the TEs by more than 45% compared to NDWI and HRWI, and by more than 15% compared to SVM. In addition, both UWI and USI were shown to have more stable optimal thresholds that are close to 0 and maintain better performance near their optimum thresholds. Therefore, TSUWI can be used as a simple yet robust method for urban water mapping with high accuracy.


Computers ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 33 ◽  
Author(s):  
Firgan Feradov ◽  
Iosif Mporas ◽  
Todor Ganchev

There is a strong correlation between the like/dislike responses to audio–visual stimuli and the emotional arousal and valence reactions of a person. In the present work, our attention is focused on the automated detection of dislike responses based on EEG activity when music videos are used as audio–visual stimuli. Specifically, we investigate the discriminative capacity of the Logarithmic Energy (LogE), Linear Frequency Cepstral Coefficients (LFCC), Power Spectral Density (PSD) and Discrete Wavelet Transform (DWT)-based EEG features, computed with and without segmentation of the EEG signal, on the dislike detection task. We carried out a comparative evaluation with eighteen modifications of the above-mentioned EEG features that cover different frequency bands and use different energy decomposition methods and spectral resolutions. For that purpose, we made use of Naïve Bayes classifier (NB), Classification and regression trees (CART), k-Nearest Neighbors (kNN) classifier, and support vector machines (SVM) classifier with a radial basis function (RBF) kernel trained with the Sequential Minimal Optimization (SMO) method. The experimental evaluation was performed on the well-known and widely used DEAP dataset. A classification accuracy of up to 98.6% was observed for the best performing combination of pre-processing, EEG features and classifier. These results support that the automated detection of like/dislike reactions based on EEG activity is feasible in a personalized setup. This opens opportunities for the incorporation of such functionality in entertainment, healthcare and security applications.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1443
Author(s):  
Mai Ramadan Ibraheem ◽  
Shaker El-Sappagh ◽  
Tamer Abuhmed ◽  
Mohammed Elmogy

The formation of malignant neoplasm can be seen as deterioration of a pre-malignant skin neoplasm in its functionality and structure. Distinguishing melanocytic skin neoplasms is a challenging task due to their high visual similarity with different types of lesions and the intra-structural variants of melanocytic neoplasms. Besides, there is a high visual likeliness level between different lesion types with inhomogeneous features and fuzzy boundaries. The abnormal growth of melanocytic neoplasms takes various forms from uniform typical pigment network to irregular atypical shape, which can be described by border irregularity of melanocyte lesion image. This work proposes analytical reasoning for the human-observable phenomenon as a high-level feature to determine the neoplasm growth phase using a novel pixel-based feature space. The pixel-based feature space, which is comprised of high-level features and other color and texture features, are fed into the classifier to classify different melanocyte neoplasm phases. The proposed system was evaluated on the PH2 dermoscopic images benchmark dataset. It achieved an average accuracy of 95.1% using a support vector machine (SVM) classifier with the radial basis function (RBF) kernel. Furthermore, it reached an average Disc similarity coefficient (DSC) of 95.1%, an area under the curve (AUC) of 96.9%, and a sensitivity of 99%. The results of the proposed system outperform the results of other state-of-the-art multiclass techniques.


2019 ◽  
Vol 33 (19) ◽  
pp. 1950213 ◽  
Author(s):  
Vibhav Prakash Singh ◽  
Rajeev Srivastava ◽  
Yadunath Pathak ◽  
Shailendra Tiwari ◽  
Kuldeep Kaur

Content-based image retrieval (CBIR) system generally retrieves images based on the matching of the query image from all the images of the database. This exhaustive matching and searching slow down the image retrieval process. In this paper, a fast and effective CBIR system is proposed which uses supervised learning-based image management and retrieval techniques. It utilizes machine learning approaches as a prior step for speeding up image retrieval in the large database. For the implementation of this, first, we extract statistical moments and the orthogonal-combination of local binary patterns (OC-LBP)-based computationally light weighted color and texture features. Further, using some ground truth annotation of images, we have trained the multi-class support vector machine (SVM) classifier. This classifier works as a manager and categorizes the remaining images into different libraries. However, at the query time, the same features are extracted and fed to the SVM classifier. SVM detects the class of query and searching is narrowed down to the corresponding library. This supervised model with weighted Euclidean Distance (ED) filters out maximum irrelevant images and speeds up the searching time. This work is evaluated and compared with the conventional model of the CBIR system on two benchmark databases, and it is found that the proposed work is significantly encouraging in terms of retrieval accuracy and response time for the same set of used features.


2013 ◽  
Vol 333-335 ◽  
pp. 1080-1084
Author(s):  
Zhang Fei ◽  
Ye Xi

In this paper, we will propose a novel classification method of high-resolution SAR using local autocorrelation and Support Vector Machines (SVM) classifier. The commonly applied spatial autocorrelation indexes, called Moran's Index; Geary's Index, Getis's Index, will be used to depict the feature of the land-cover. Then, the SVM based on these indexes will be applied as the high-resolution SAR classifier. A Cosmo-SkyMed scene in ChengDu city, China is used for our experiment. It is shown that the method proposed can lead to good classification accuracy.


Author(s):  
Sendren Sheng-Dong Xu ◽  
Chien-Tien Su ◽  
Chun-Chao Chang ◽  
Pham Quoc Phu

This paper discusses the computer-aided (CAD) classification between Hepatocellular Carcinoma (HCC), i.e., the most common type of liver cancer, and Liver Abscess, based on ultrasound image texture features and Support Vector Machine (SVM) classifier. Among 79 cases of liver diseases, with 44 cases of HCC and 35 cases of liver abscess, this research extracts 96 features of Gray-Level Co-occurrence Matrix (GLCM) and Gray-Level Run-Length Matrix (GLRLM) from the region of interests (ROIs) in ultrasound images. Three feature selection models, i) Sequential Forward Selection, ii) Sequential Backward Selection, and iii) F-score, are adopted to determine the identification of these liver diseases. Finally, the developed system can classify HCC and liver abscess by SVM with the accuracy of 88.875%. The proposed methods can provide diagnostic assistance while distinguishing two kinds of liver diseases by using a CAD system.


Sign in / Sign up

Export Citation Format

Share Document