scholarly journals Modeling and simulation of quasi-Z-source indirect matrix converter for permanent magnet synchronous motor drive

Author(s):  
Ahmed Muthenaa Nori ◽  
Turki K. Hassan

This paper aims to use a three-phase quasi-Z-source indirect matrix converter (QZSIMC) to expand the voltage gain for application in a Permanent Magnet Synchronous Motor (PMSM) drives. In this converter, a unique quasi-Z-source network (QZSN) connects the three-phase input voltage to conventional indirect matrix converter (IMC) in order to boost the supply voltage for PMSM because of limited voltage gain of IMC. Dual space vector modulation (SVM) is utilized to control the QZSIMC. The amplitude of output voltage for quasi-Z-source network is raised by the shoot-through of the rectifier stage, so the system voltage gain becomes greater. Through selecting the optimized value of shoot through duty ratio (<em>D</em>) and modulation index of the rectifier stage (), the drive system can automatically regulate the output voltage of QZSIMC during conditions of voltage sag , step change in load torque and reference speed change when the required voltage gain of QZSIMC is more than 0.866 depending on input voltage and required output voltage.The vector control technique based on closed loop speed control is proposed to control speed of the motor from zero to rated speed which is combined with the proposed converter to obtain the motor drive. The simulation results with MATLAB /Simulink 2015 are obtained to validate performance of PMSM drive.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1583
Author(s):  
Wei-Tse Kao ◽  
Jonq-Chin Hwang ◽  
Jia-En Liu

This study aimed to develop a three-phase permanent-magnet synchronous motor drive system with improvement in current harmonics. Considering the harmonic components in the induced electromotive force of a permanent-magnet synchronous motor, the offline response of the induced electromotive force (EMF) was measured for fast Fourier analysis, the main harmonic components were obtained, and the voltage required to reduce the current harmonic components in the corresponding direct (d-axis) and quadrature (q-axis) axes was calculated. In the closed-loop control of the direct axis and quadrature axis current in the rotor reference frame, the compensation amount of the induced EMF with harmonic components was added. Compared with the online adjustment of current harmonic injection, this simplifies the control strategy. The drive system used a 32-bit digital signal processor (DSP) TMS320F28069 as the control core, the control strategies were implemented in software, and a resolver with a resolver-to-digital converter (RDC) was used for the feedback of angular position and speed. The actual measurement results of the current harmonic improvement control show that the total harmonic distortion of the three-phase current was reduced from 5.30% to 2.31%, and the electromagnetic torque ripple was reduced from 15.28% to 5.98%. The actual measurement results verify the feasibility of this method.


2021 ◽  
Vol 23 (1) ◽  
pp. 27-35
Author(s):  
Muhammad Ishaq ◽  
Yanbo Che ◽  
Kifayat Ullah

Matrix converter is an AC-AC direct power converter comprising of an array of bi-directional switches. It does not require an intermediate DC-link and allows sinusoidal output waveforms with varying amplitudes and frequencies. The configuration of these bi-directional switches decides the number of inputs and outputs of the matrix converter. This research uses a direct matrix converter (DMC) as a phase-changing device that can convert a three-phase AC voltage into a 5-phase AC voltage. The DMC is modulated with the model predictive control algorithm. The output of DMC is fed to a five-phase permanent magnet synchronous motor (PMSM). The model predictive current control technique for DMC is carried out by developing a mathematical model of an input filter and PM motor used as a load. The predictive control of DMC results in sinusoidal output current, and it also enables the frequency variation in the output current. This frequency variation is useful in controlling the speed of the motor connected to the load. After controlling the 5-phase motor, the switching frequency regulation is done to observe its effect on the motor's stator current waveforms. Switching frequency regulation helps to limit the unnecessary switching of DMC. We developed a MATLAB-based Simulink model to study PMSM, and detailed results are presented. The results show that switching regulation can significantly reduce the switching frequency without compromising the current waveform quality.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2277
Author(s):  
Nuofan Zou ◽  
Yan Yan ◽  
Tingna Shi ◽  
Peng Song

In order to expand the speed range for an indirect matrix converter–surface mounted permanent magnet synchronous motor drive (IMC-SPMSM), a wide speed range operation control strategy based on a flux-weakening control and an over-modulation method is proposed in this paper. In the stage of the inverter, an IMC over-modulation method is designed, which increases the fundamental voltage transmission ratio (VTR) to 1. In addition, considering the variation of the voltage limit boundary of the IMC with motor speed, flux-weakening control is implemented based on the voltage error feedback method, which maximizes the voltage utilization rate by setting the endpoint of the output voltage vector on the voltage boundary during the flux-weakening operation. In the stage of the rectifier, over-modulation is automatically switched on or off according to operation requirements by a modulation depth controller. Finally, experimental results show that the proposed strategy increases the maximum speed of the IMC-SPMSM by nearly 35% compared to the maximum torque per ampere (MTPA) method. Besides, the enlarged voltage margin by the rectifier stage over-modulation effectively shortens the setting time.


Sign in / Sign up

Export Citation Format

Share Document