An Improved Constant Voltage Based MPPT Technique for PMDC Motor

Author(s):  
Mohammed Asim ◽  
Mohd Tariq ◽  
M.A. Mallick ◽  
Imtiaz Ashraf

Stand-alone photovoltaic (SAPV) systems are being used in remote areas and are being seen as one of the promising solution in this regard. The SAPV system as presented in the paper consists of solar PV panel, a DC-DC converter, a controller and a PMDC motor. The current-voltage and power-voltage characteristics being nonlinear, the SAPV system require maximum power point techniques (MPPT) control techniques to extract maximum power available from the PV cell. A voltage based MPPT technique which is capable of tracking MPP has been selected because of numerous advantages it offers such as: simple and low cost of implementation. The limitation of constant voltage method is that its efficiency is low as the PV panel has to be disconnected from the load for measurement of the open circuit voltage (V<sub>oc</sub>). In the presented paper, the authors have removed this limitation by using a pilot PV panel for measurement of V<sub>oc</sub>. A proportional-integrator (PI) based controller is used in implementation of constant voltage MPP technique and the modeling is done in MATLAB<sup>®</sup>/SIMULINK simulation environment. The simulation results are presented and discussed in the paper, the results shows that the efficiency of the system has increased.

2018 ◽  
Vol 7 (2) ◽  
pp. 718 ◽  
Author(s):  
Ahmed Abid ◽  
Adel Obed ◽  
Fawzi Al-Naima

Solar photovoltaic (PV) farm output power is highly related to the panel conditions. Soiling causes faults in the PV panels leading to a dras-tic reduction in the system efficiency. In vast solar PV farms, the detection of faults in an individual PV panel is a difficult task since it is usually done manually. In this research, a new design is proposed to detect the production of individual PV panel automatically and periodically to evaluate the condition of each panel in the farm no matter how it is connected in the array. The proposed design allows the user to measure the open circuit voltage (VOC), the short circuit current (ISC) and the delivered power for each PV panel in the farm. It is also capable of controlling each panel to work at the maximum power point using a built in Maximum Power Point Tracking (MPPT) sub-circuit on each solar panel. The presented system depicts a complete wireless sensor network, which does not need any extra wiring and is character-ized by being of low cost, reliable and efficient.


2016 ◽  
Vol 78 (6-2) ◽  
Author(s):  
Ammar Hussein Mutlag ◽  
Azah Mohamed ◽  
Hussain Shareef

In photovoltaic (PV) system, maximum power tracking (MPPT) is crucial to improve the system performance. Irradiance and temperature are the two important parameters that affect MPPT. The conventional perturbation and observation (P&O) based MPPT algorithm does not accurately track the PV maximum power point. Therefore, this paper presents an improved P&O algorithm (Im-P&O) based on variable perturbation. The idea behind the Im-P&O algorithm is to produce variable step changes in the reference current/voltage for fast tracking of the PV maximum power point. The Im-P&O based MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with a capacity of 3 kW peak. A complete PV system is modeled using the MATLAB/Simulink. Simulation results showed that the Im-P&O based MPPT achieved faster and accurate performance compared with the conventional P&O algorithm.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 321 ◽  
Author(s):  
Dmitry Baimel ◽  
Saad Tapuchi ◽  
Yoash Levron ◽  
Juri Belikov

This paper proposes two new Maximum Power Point Tracking (MPPT) methods which improve the conventional Fractional Open Circuit Voltage (FOCV) method. The main novelty is a switched semi-pilot cell that is used for measuring the open-circuit voltage. In the first method this voltage is measured on the semi-pilot cell located at the edge of PV panel. During the measurement the semi-pilot cell is disconnected from the panel by a pair of transistors, and bypassed by a diode. In the second Semi-Pilot Panel method the open circuit voltage is measured on a pilot panel in a large PV system. The proposed methods are validated using simulations and experiments. It is shown that both methods can accurately estimate the maximum power point voltage, and hence improve the system efficiency.


2019 ◽  
Author(s):  
Saad Motahhir ◽  
Abdelaziz El Ghzizal ◽  
Aziz Derouich

The objective of this work is to make a model of photovoltaic cells (PV) dedicated to teaching renewable energy using PSIM software. This model is based on ratings provided by the manufacturer as: open circuit voltage, short circuit current, voltage and current corresponding to the maximum power point. So the resulting model has a better approach and takes into account the influence of different physical parameters including temperature, irradiation, series resistance, shunt resistance and saturation current of the diode. After a general presentation of the photovoltaic conversion chain, the article details, at first, the modeling of a photovoltaic panel. Secondly, we focus on the implementation of a MPPT command for controlling the DC / DC to operate the PV array at maximum power (MPP).


Author(s):  
Milad Samady Shadlu

Background: Using the solar energy by photovoltaic arrays is constantly increasing and has been considered as one of the cleanest sources of energy in recent years. One of the ways to reduce the cost of photovoltaic systems is to maximize the power delivered to the load. On the other hand, changing the load leads to change the operating point of the solar conversion system and causes deviation from the maximum power point (MPP). Methods: For this reason, in various research studies, attention has been paid to MPPT methods applicable in photovoltaic systems. In this paper, a comparison is performed between conventional MPPT methods including Perturb and Observe (P&O), Incremental Conductance (INC), Fractional Open Circuit Voltage (FOCV), Ripple Correlation Control (RCC) and Extremum Seeking Control (ESC). Only current and voltage parameters of the PV panel are measured instantly and used to generate control signals. However, the output voltage of the PV cells is relatively low without using the DC-DC converters. Results: Therefore, high-performance DC-DC converters need to convert the low voltage PV arrays into high DC voltages to handle the 220 VAC systems. Conclusion: Accordingly, in this study, conventional DC-DC converters including Boost, Buck and Buck-Boost converters are investigated, and each of them is simulated using different MPPT controllers and the results are compared together. It is worth noting that all of the simulations are carried out using MATLAB/Simulink.


2021 ◽  
Vol 54 (6) ◽  
pp. 847-852
Author(s):  
Asadi Suresh Kumar ◽  
Vyza Usha Reddy

One of the major concerns for continuous solar photovoltaic (PV) generation is partial shading. The movement of clouds, shadow of buildings, trees, birds, litter and dust, etc., can lead to partial shadow conditions (PSCs). The PSCs have caused inconsistent power losses in the PV modules. This leads to a shortage of electricity production and the presence in the PV curve of several peaks. One of the simplest solutions to PSC’s is the PV configurations. The objective of this paper is modelling and simulation of solar PV system in various shading scenarios for KC200GT 200 W, 5 x 5 configurations that includes Series/Parallel (SP), Total-Cross-Tied (TCT), Triple-Tied (TT), Bridge-Link (BL) configurations. Real time PSC’s such as corner, center, frame, random, diagonal, right side end shading conditions are evaluated under all PV array configurations. A comparative analysis is carried out for the parameters such as open circuit voltage, short circuit current, maximum power point, panel mismatch losses, fill factor, efficiency under all PV configurations considering PSC’s. From the comparison analysis best configuration will be presented.


2014 ◽  
Vol 573 ◽  
pp. 89-94
Author(s):  
C. Vimalarani ◽  
N. Kamaraj

Maximum power point tracking techniques play an important role in solar photovoltaic systems to achieve the desired output power. These techniques track maximum power from the solar panel under varying solar irradiation and cell temperature. Among these techniques, Perturb & Observe (P&O) is used by many researchers. Due to the ease of realization and Incremental conductance (INC) algorithm is widely used because of reduced oscillations around maximum power point. In this paper, MATLAB/SIMULINK tool has been used to evaluate the performance of 125W solar PV panel by using these algorithms. The performance comparison of P&O and INC techniques is made and the results exhibit the maximum power tracking from solar PV panel and well regulated output voltage across the load is achieved.


2014 ◽  
Vol 23 (04) ◽  
pp. 1450045 ◽  
Author(s):  
BOYANG HU ◽  
SWAMIDOSS SATHIAKUMAR

The research into series connection of dc–dc converters has been concentrating more recently on creating a high voltage low current string. However, the interleaving technique of series-connect photovoltaic (PV) module integrated converters (MICs) has not been sufficiently addressed so far. This paper proposes a low cost high performance interleaving technique based on series PV MICs to reduce the output voltage-ripples. With the reduced voltage-ripples, the size and cost of capacitors at grid connected inverters can be reduced. The proposed technique is capable of solving the problem for PV panels with mismatched operating conditions. Each PV panel is able to track its own maximum power point (MPP) which simultaneously delivers the maximum power for the system. The proposed technique is mathematically investigated based on boost (step-up) converters and validated by Simulink/Matlab simulation and experiment results. The MPP tracking (MPPT) algorithm is tested for a PV/battery charging system with satisfactory performances in both steady-state and transient responses with reduced voltage-ripples.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Maria Teresa Penella ◽  
Manel Gasulla

Small-size PV cells have been used to power sensor nodes. These devices present limited computing resources and so low complexity methods have been used in order to extract the maximum power from the PV cells. Among them, the fractional open circuit voltage (FOCV) method has been widely proposed, where the maximum power point of the PV cell is estimated from a fraction of its open circuit voltage. Here, we show a generalization of the FOCV method that keeps its inherent simplicity and improves the tracking efficiency. First, a single-diode model for PV cells was used to compute the tracking efficiency versus irradiance. Computations were carried out for different values of the parameters involved in the PV cell model. The proposed approach clearly outperformed the FOCV method, specially at low irradiance, which is significant for powering sensor nodes. Experimental tests performed with a 500 mW PV panel agreed with these results.


Sign in / Sign up

Export Citation Format

Share Document