Rotary Switched Reluctance Actuator: A Review on Design Optimization and Its Control Methods

Author(s):  
Siau Ping Tee ◽  
Mariam Md Ghazaly ◽  
Shin Horng Chong ◽  
Irma Wani Jamaludin

<span style="color: black; font-family: 'Times New Roman','serif'; font-size: 9pt; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA; mso-bidi-font-style: italic;">A switched reluctance actuator (SRA) is a type of electromagnetic stepper actuator that is gaining popularity for its simple and rugged construction, ability of extremely high-speed operation and hazard-free operation. SRA gained supremacy over permanent magnet actuators due to the fact that its building material are relatively low cost compared to the expensive and rare permanent magnets. SRA is already making its debut in automotive, medical and high precision applications. However, many parties are still oblivious to this new age actuator. This paper reviews the latest literature in terms of journal articles and conference proceedings regarding the different design parameters and control method of SRA. The impact of the parameters on the performance of SRA are discussed in details to provide valuable insight. This paper also discussed the advantages of various novel SRA structure designs that prove to be a huge contribution to the future technology. It is found that several design parameters such as the air gap when kept minimum, increases torque value; while increasing number of phases in SRA minimizes torque ripples. Increased stator and rotor arc angles will increase torque, not to mention a larger excitation current can also achieve the same effect. Researches are often done through Finite Element Method (FEM) analysis to verify the optimized design parameters before fabrication, whilst experimental procedures are executed to verify the simulation results. To ensure smooth phase switching and improved torque output, intelligent controllers are employed in speed control and direct torque control (DTC) methods of SRA.</span>

Author(s):  
Hafeezul Haq ◽  
Halil Ibrahim Okumus

The switched reluctance motor gains a significant response in industries in the past decade because of its ruggedness, high torque to inertia ratio, simple structure, high reliability and inexpensive manufacturing capability. These features make it a suitable candidate for various applications and electric drives. However, In the field of electric drives a switched reluctance motor drive is having doubly salient structure thus it inherently produces high torque ripples and acoustic noise problems and its controlling difficulties that is an undesirable effect for vehicle applications, especially at low speed. The main objective of this paper is to minimize the torque ripples and to control its speed. In this paper a fuzzy logic controller based direct torque control method is used for speed controlling and for controlling of torque ripples of the 8/6 SRM drive. It’s modelling and application of fuzzy logic controller based direct torque control method is done in MATLAB/SIMULINK environment.


2012 ◽  
Vol 195-196 ◽  
pp. 1153-1157
Author(s):  
Liang Qi Gui ◽  
Cao Yang ◽  
Jia He ◽  
Xiao Ping Gao ◽  
Ke Chen ◽  
...  

Grounded vias modeling is used to analyze the impact on the high speed PCB EMC and SI issues in three aspects, including theoretical analysis, simulator modeling and practical PCB test. In this paper, we discuss the full-wave complex scattering parameter model and full-wave model. Then the full-wave analysis model of the through holes for model validation and comparison are established, by using numerical simulation software HFSS and CST Microwave Studio. The initial test results on the practical PCB show that the analyzed method is reasonable and accurate. And optimized design parameters can ensure the continuity of the impedance of vias, and introduce lesser return loss and insertion loss. It is shown that the signal transmission performance is greatly improved with the grounded via added, which is helpful in specifying the manufacturing tolerance of via designs.


2012 ◽  
Vol 466-467 ◽  
pp. 819-823
Author(s):  
Di Chen ◽  
Rui Juan Hou ◽  
Jie Li ◽  
Jin Niu Tao

This paper proposed a kind of new control method for resolving the problem of the Direct Torque Control (DTC)'s greater torque pulsation problem at low speed, this method is based on Space Vector Pulse Width Modulation (SVPWM). SVPWM is a kind of excellent Pulse Width Modulation (PWM) scheme. It can not only improve the inverter DC voltage utilization, reduce harmonic losses, restrain torque pulsation, also easily generate high-precision real-time waveform by the high-speed digital signal processor. The simulation results of this system by Matlab/Simulink indicate that the space vector PWM direct torque control can efficiently reduce the pulse of motor torque and flux linkage.


2011 ◽  
Vol 328-330 ◽  
pp. 1693-1696
Author(s):  
Shi Qiu Li ◽  
Shu Ai Hao ◽  
Xu Ma ◽  
Yong Mei Cheng

Based on the theory of direct torque control, the simulation model of asynchronous motor is designed to solve two problems. The one is that asynchronous motor in high speed, if a single circular flux control method used, its switching losses will be great; the other one is that asynchronous motor in low speed, if a single hexagonal flux control method used, it will make a large harmonic current. So double modes are used in solve problems together in this paper. That is when asynchronous motor runs at low speed circular flux control strategy is adopted, and when it runs at high speed hexagon flux control strategy is adopted. Auto-switch between circular flux control strategy and hexagon flux control strategy is achieved. Simulation results show that not only the harmonic current can be reduced, and the switching losses are reduced effectively by smooth switching the two control strategies.


2019 ◽  
Vol 52 (5-6) ◽  
pp. 634-656
Author(s):  
Caglar Uyulan

Even if there exists remarkable applications of induction machines in variable speed drives and also in speed sensorless control in the low–high speed region, open/closed loop estimators in the literature utilized on induction machine sensorless position control vary regarding to their accuracies, sensitivity, and robustness with respect to the variation of model parameter. The deterioration of dynamic performance depends on the lack of estimation techniques which provide trustable information on the flux or speed/position over a wide speed range. An effective estimator should handle the high number of parameter and model uncertainties inherent to induction machines and also torque ripple, the compensation of which is crucial for a satisfactory decoupling and linearizing control to provide the accuracy and precision requirements of demanding motion control in the field of robotics/unmanned vehicle. In this study, to address all of the above-mentioned problems, robust-adaptive linearizing schemes for the sensorless position control of induction machines based on high-order sliding modes and robust differentiators to improve performance were designed. The control schemes based on direct vector control and direct torque control are capable of torque ripple attenuation taking both space and current harmonics into account. The simulation results comprise both the estimation and sensorless speed control of induction machines over a wide operation range, especially at low and zero speed, all of which are promising and indicate significant superiority over existing solutions in the literature for the high precision, direct-drive, speed/position sensorless control of squirrel-cage induction machines.


2013 ◽  
Vol 712-715 ◽  
pp. 2757-2760
Author(s):  
Jun Li Zhang ◽  
Yu Ren Li ◽  
Long Fei Fu ◽  
Fan Gao

In order to deeply understand the characteristics of the permanent magnet synchronous motor direct torque control method, its mathematical models were established in the two-phase stationary coordinate system, the two-phase synchronous rotating coordinate system, and x-y stator synchronous rotating coordinate system. The implementation process of direct torque control method in varied stator winding connection was analyzed in detail. In order to improve the speed and torque performance of the permanent magnet synchronous motor, the direct torque control block diagram and the space voltage vector selection table were given. Finally, the summary and outlook of reducing torque ripple in the permanent magnet synchronous motor direct torque control methods.


Sign in / Sign up

Export Citation Format

Share Document