Research on the EM Modeling of Optimization of PCB Grounded Via

2012 ◽  
Vol 195-196 ◽  
pp. 1153-1157
Author(s):  
Liang Qi Gui ◽  
Cao Yang ◽  
Jia He ◽  
Xiao Ping Gao ◽  
Ke Chen ◽  
...  

Grounded vias modeling is used to analyze the impact on the high speed PCB EMC and SI issues in three aspects, including theoretical analysis, simulator modeling and practical PCB test. In this paper, we discuss the full-wave complex scattering parameter model and full-wave model. Then the full-wave analysis model of the through holes for model validation and comparison are established, by using numerical simulation software HFSS and CST Microwave Studio. The initial test results on the practical PCB show that the analyzed method is reasonable and accurate. And optimized design parameters can ensure the continuity of the impedance of vias, and introduce lesser return loss and insertion loss. It is shown that the signal transmission performance is greatly improved with the grounded via added, which is helpful in specifying the manufacturing tolerance of via designs.

Author(s):  
Siau Ping Tee ◽  
Mariam Md Ghazaly ◽  
Shin Horng Chong ◽  
Irma Wani Jamaludin

<span style="color: black; font-family: 'Times New Roman','serif'; font-size: 9pt; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA; mso-bidi-font-style: italic;">A switched reluctance actuator (SRA) is a type of electromagnetic stepper actuator that is gaining popularity for its simple and rugged construction, ability of extremely high-speed operation and hazard-free operation. SRA gained supremacy over permanent magnet actuators due to the fact that its building material are relatively low cost compared to the expensive and rare permanent magnets. SRA is already making its debut in automotive, medical and high precision applications. However, many parties are still oblivious to this new age actuator. This paper reviews the latest literature in terms of journal articles and conference proceedings regarding the different design parameters and control method of SRA. The impact of the parameters on the performance of SRA are discussed in details to provide valuable insight. This paper also discussed the advantages of various novel SRA structure designs that prove to be a huge contribution to the future technology. It is found that several design parameters such as the air gap when kept minimum, increases torque value; while increasing number of phases in SRA minimizes torque ripples. Increased stator and rotor arc angles will increase torque, not to mention a larger excitation current can also achieve the same effect. Researches are often done through Finite Element Method (FEM) analysis to verify the optimized design parameters before fabrication, whilst experimental procedures are executed to verify the simulation results. To ensure smooth phase switching and improved torque output, intelligent controllers are employed in speed control and direct torque control (DTC) methods of SRA.</span>


2012 ◽  
Vol 2012 (1) ◽  
pp. 001057-001067
Author(s):  
Darryl Kostka ◽  
Antonio Ciccomancini Scogna

3D ICs promise “more than Moore” integration by packing a lot of functionality into small form factors. Interposers along with TSVs play an important role in 3D integration from an electrical, thermal and mechanical point of view. The goal of this paper is to electrically model TSVs and 3D interposers by means of three 3D full wave electromagnetic simulations. A comparative analysis of various configurations of signal delivery networks in 3D interposers for high speed signal transmission is presented.


2019 ◽  
Vol 36 (10) ◽  
pp. 1933-1944 ◽  
Author(s):  
Haoyu Jiang

AbstractNumerical wave models can output partitioned wave parameters at each grid point using a spectral partitioning technique. Because these wave partitions are usually organized according to the magnitude of their wave energy without considering the coherence of wave parameters in space, it can be difficult to observe the spatial distributions of wave field features from these outputs. In this study, an approach for spatially tracking coherent wave events (which means a cluster of partitions originating from the same meteorological event) from partitioned numerical wave model outputs is presented to solve this problem. First, an efficient traverse algorithm applicable for different types of grids, termed breadth-first search, is employed to track wave events using the continuity of wave parameters. Second, to reduce the impact of the garden sprinkler effect on tracking, tracked wave events are merged if their boundary outlines and wave parameters on these boundaries are both in good agreement. Partitioned wave information from the Integrated Ocean Waves for Geophysical and other Applications dataset is used to test the performance of this spatial tracking approach. The test results indicate that this approach is able to capture the primary features of partitioned wave fields, demonstrating its potential for wave data analysis, model verification, and data assimilation.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 299 ◽  
Author(s):  
Myunghoi Kim

An analytical model for metamaterial differential transmission lines (MTM-DTLs) with a corrugated ground-plane electromagnetic bandgap (CGP-EBG) structure in high-speed printed circuit boards is proposed. The proposed model aims to efficiently and accurately predict the suppression of common-mode noise and differential signal transmission characteristics. Analytical expressions for the four-port impedance matrix of the CGP-EBG MTM-DTL are derived using coupled-line theory and a segmentation method. Converting the impedance matrix into mixed-mode scattering parameters enables obtaining common-mode noise suppression and differential signal transmission characteristics. The comprehensive evaluations of the CGP-EBG MTM-DTL using the proposed analytical model are also reported, which is validated by comparing mixed-mode scattering parameters Scc21 and Sdd21 with those obtained from full-wave simulations and measurements. The proposed analytical model provides a drastic reduction of computation time and accurate results compared to full-wave simulation.


2010 ◽  
Vol 118-120 ◽  
pp. 728-732
Author(s):  
Shu Wen Zhou ◽  
Si Qi Zhang ◽  
Guang Yao Zhao

Tractor semitrailers on high speed obstacle avoidance under emergency are likely to arise rollover or jack-knifing, which are serious risks for motorists. A dynamic stability analysis model of a three-axle tractor semitrailer vehicle is developed using the application tool. The linearized vehicle model is utilized to predict the dynamics state of the tractor semitrailer built in multibody dynamics simulation software. The lateral stability simulation for yaw rate following and anti-rollover has been performed on the dynamic model based on virtual prototyping. The results show that the lateral stability control based on tractor semitrailer proposed in this paper can stabilize the tractor semitrailer, rollover and jack-knifing can be prevented to a large extent.


2009 ◽  
Vol 610-613 ◽  
pp. 408-413
Author(s):  
Jian Yu Zhang ◽  
Yue Fu ◽  
Li Bin Zhao ◽  
Jian Cheng Fang

Flywheel rotor structure is one of essential assemblies of the flywheel system used in IPACS. It is significant to ensure the safety of metallic hub and the composite rim under high centrifugal loading induced by the rotation field and the surface pressure produced by the interface misfits. In this paper a 3-D stress analysis model of the flywheel rotor is presented with the finite element analysis software ANSYS and the failure criteria of the materials are discussed to assess the structural strength. Moreover, the key design parameters are investigated briefly to disclose their influences on the stress distribution of rotor structure. At last, an optimum mathematics model with the outer radius of metallic hub, the thickness of each composite ring and the interface misfits as the design variables is presented. Based on the optimum design platform, the series of flywheel rotor structures can be designed systematically.


2013 ◽  
Vol 760-762 ◽  
pp. 320-324
Author(s):  
Shi Lei Zhou ◽  
Ya Lin Guan ◽  
Xin Kun Tang

High-speed signal connector has become a key factor of the signal transmission quality in telecommunications and data communications system. Signal integrity of connector is an inevitable problem. This paper based on the theory of differential transmission lines and Multimode S-Parameters, analyzed the USB3.0 connector signal integrity. And use 3D simulation software CST to build model and analyze the relationship of signal integrity and connectors geometry.


2013 ◽  
Vol 427-429 ◽  
pp. 179-186
Author(s):  
Kai Xuan Fu ◽  
Zhen Xing Zheng ◽  
Hua Wei Zhang

Clamping mechanism was important for the working performance of die-casting machine. There were many factors such as various design variables and complex parameters during the design of the double-toggle clamping mechanism for which the high performance of die-casting machine could not be realized and the expansion force coefficient was small. In this paper, aimed to the design of the large clamping machansim for 25000KN die-casting machine, based on the analysis of the motion feature, the multi-body dynamics equation was construct, and the different design parameters in the optimal design math model were optimized and analyzed with the help of the MSC.ADAMS software. From result, after optimized, it was found that the expansion force coefficient was 23.59, the distance of stroke for the moving platen was decreased 20.3%; the clamping force was added to 3.25+e7N and the course of clamping mould was more stable which mean that the impact exerted on clamping mechanism was reduced. According to the optimized design proposal, the strength check for clamping mechanism was computed by numerical simulation, from the result, the design requirements were realized. And it supplied the technological reference for assurance of quality and performance of die-casting machine, based on which the prototype of 25000KN die-casting machine was manufactured.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 297
Author(s):  
Hui Zhao ◽  
Ping Xu ◽  
Benhuai Li ◽  
Shuguang Yao ◽  
Chengxing Yang ◽  
...  

When a train crashes with another train at a high speed, it will lead to significant financial losses and societal costs. Carrying out a train-to-train crash test is of great significance to reproducing the collision response and assessing the safety performance of trains. To ensure the testability and safety of the train collision test, it is necessary to analyze and predict the dynamic behavior of the train in the whole test process before the test. This paper presents a study of the dynamic response of the train in each test stage during the train-to-train crash test under different conditions. In this study, a 1D/3D co-simulation dynamics model of the train under various load conditions of driving, collision and braking has been established based on the MotionView dynamic simulation software. The accuracy of the numerical model is verified by comparing with a five-vehicle formations train-to-train crash test data. Sensitivities of several key influencing parameters, such as the train formation, impact velocity and the vehicle mass, are reported in detail as well. The results show that the increase in the impact velocity has an increasing effect on the movement displacement of the vehicle in each process. However, increasing the vehicle mass and train formation has almost no effect on the running displacement of the braking process of the traction train. By sorting the variables in descending order of sensitivity, it can be obtained that impact speed > train formation > vehicle mass. The polynomial response surface method (PRSM) is used to construct the fitting relationship between the parameters and the responses.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000228-000232
Author(s):  
Min Xu ◽  
Robert Geer ◽  
Pavel Kabos ◽  
Thomas Wallis

High frequency signal transmission through silicon substrates is critical for 3D heterogeneous integration. This paper presented fabrication, testing, and simulation of high-frequency interconnects based on through-silicon vias (TSVs) and coplanar waveguides (CPWs) for stacked 3D integrated circuits (3D ICs). Our simulation results showed that adding ground TSVs can improve signal transmission by 6× at 50GHz. We further investigated signal/ground TSV (1SXG) configurations for high-bandwidth signal transmission links. Scattering parameter measurements of fabricated 1SXG TSV structures for frequencies from 100MHz to 50GHz show low insertion loss (S21 less than −1dB up to 50GHz) and return loss (S11 lower than −15dB). These results indicate that these vertical interconnects exhibit good performance for high speed signal transmission. To understand the RF signal transmission in 3D interconnects, we used full wave electromagnetic simulation to investigate the electromagnetic field distribution associated with the ground TSV placement. We observed that the ground TSVs induced substantial overall field confinement, consistent with the experimental observation of improved signal transmission. Simulations also provided design guidance with respect to the substrate conductivity's impact on EM confinement and signal transmission.


Sign in / Sign up

Export Citation Format

Share Document