The Improvement of Solar Cell Output Power Using Cooling and Reflection from Mirror

Author(s):  
Budiyanto Budiyanto ◽  
Fadliondi Fadliondi

This paper explains the experimental investigation to improve the output power of solar cell using cooling and light reflection from mirrors. The results show that by adding mirror, the current and output power of solar cell increase but the open circuit voltage and maximum power voltage decrease due to heat. By adding cooling, the open circuit voltage and the maximum power voltage are improved, so the output power also increases.

2019 ◽  
Vol 8 (4) ◽  
pp. 402
Author(s):  
Doudou N. Luta ◽  
Atanda K. Raji

The concept of power tracking was at first applied to renewable power systems and especially those based on solar and wind to extract as much power as possible from them. Both types of power systems operate on the principle of converting either solar or wind into electricity. Thus, their output power is direct dependent on the solar radiation for solar power systems and on the wind speed for wind generators. To maintain efficient system operations, the output power of these power systems is optimized through maximum power tracking techniques. In the similar vein, fuel cell stacks display nonlinear output powers resulting from internal limitations and operating parameters such as tem-perature, hydrogen and oxygen partial pressures and humidity levels, etc., leading to a reduced system performance. It is critical to extract as much power as possible from the stack, thus, to prevent also an excessive fuel use. To ensure that, the power converter interfaced to the stack must be able to self-adjust its parameters continuously, hence modifying its voltage and current depending upon the maximum power point position. Diverse techniques are utilized to extract maximum power from the fuel-cell stack.  In this paper, a fractional open circuit voltage and fuzzy rule based maximum power tracking techniques are considered and compared. The proposed system consists of a 50 kW Proton Exchange Membrane fuel cell interfaced to a DC-to-DC boost converter. The converter is designed to deliver 1.2 kV from 625 V input voltage. The simulation is carried out under Matlab/Simulink environment.  


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1802
Author(s):  
Ling Bu ◽  
Shengjiang Quan ◽  
Jiarong Han ◽  
Feng Li ◽  
Qingzhao Li ◽  
...  

The fractional open-circuit voltage (FOCV) method is commonly adopted to track maximal power point of photovoltaic systems due to easy implementation and cost-effectiveness. However, the FOCV method is confronted with unstable output power and limited tracking accuracy. This paper proposes a novel on-site traversal FOCV method with uninterrupted output power and increased tracking accuracy through simulation and experimental verifications. Each solar cell is connected with a bypass diode and switching circuitry, so that specific solar cell can be traced and measured consecutively for determining its maximal power point (MPP). MATLAB/Simulink simulation results show that, in the time-varying irradiance case, the proposed method achieves a low ripple factor of 0.13% in 11–13 h and 0.88% in 9–15 h, under the typical 24 h irradiance curve. In the spatial-varying irradiance case, the accuracy of the proposed method reaches 99.85%. Compared with other FOCV methods, like pilot cell and semi pilot cell methods, the proposed method is of higher accuracy with a limited ripple effect. Experimental results show that this method can effectively trace different output performance of specific solar cell while generating stable output voltage with a low ripple factor of 1.55%, proving its compatibility with distributed sensing and applicability in smart photovoltaic systems.


Author(s):  
Limin Shao ◽  
Shuli Yang

A large area of sunlight onto solar cells is gathered by concentrating system for spacial concentrating solar array, which reduces the amount of solar cells by increasing light intensity onto the solar cells of the unit area. Under concentrating conditions, the short-circuit current, open-circuit voltage, fill factor, efficiency, operating temperature and strong thermal-electrical coupling characteristics of concentrating solar cells are different from the conventional solar cells because of the high intensity and high operating temperature. The concentrating module design, solar cell selection, and design of solar cell heat-dissipation have been carried out. The thermal-electric coupling model of special concentrating photovoltaic system has been established. The relationships among concentrated ratio, substrate-thickness, thermal conductivity of substrate-material and solar cell’s temperature, density of short-circuit current, open-circuit voltage, maximum output power have been analyzed, which provide a view to a reasonabl0e match and selection of multi-parameters in engineering design. Results show that the concentrated ratio has an overall effect on the open-circuit voltage, short-circuit current, efficiency and operating temperature of the solar cell. There is a strong coupling relationship among the parameters, and the positive and negative impacts caused by the concentrating characteristics should be weighed in the engineering design. The short-circuit current density of concentrating solar cells is proportional to the concentrated ratio. Under the lower concentrated ratio circumstance, fill factor and efficiency is not substantially affected by the concentrated ratio. The maximum output power and open-circuit voltage increase with the increase of concentrated ratio. Temperature of concentrating solar cells has an adverse effect on the open-circuit voltage, efficiency and output power, which needs high efficient radiator measures to be taken. The operating temperature of solar cells could be decreased significantly by the high thermal conductivity of the substrate-material. The concentrated ratio between 9~15 is recommended for spacial solar array, which not only embodies the advantage of concentrator like improving the cell-efficiency and decreasing the cost, but also doesn’t exact the deploying precision of concentrating system.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 592
Author(s):  
Myeong Sang Jeong ◽  
Yonghwan Lee ◽  
Ka-Hyun Kim ◽  
Sungjin Choi ◽  
Min Gu Kang ◽  
...  

In the fabrication of crystalline silicon solar cells, the contact properties between the front metal electrode and silicon are one of the most important parameters for achieving high-efficiency, as it is an integral element in the formation of solar cell electrodes. This entails an increase in the surface recombination velocity and a drop in the open-circuit voltage of the solar cell; hence, controlling the recombination velocity at the metal-silicon interface becomes a critical factor in the process. In this study, the distribution of Ag crystallites formed on the silicon-metal interface, the surface recombination velocity in the silicon-metal interface and the resulting changes in the performance of the Passivated Emitter and Rear Contact (PERC) solar cells were analyzed by controlling the firing temperature. The Ag crystallite distribution gradually increased corresponding to a firing temperature increase from 850 ∘C to 950 ∘C. The surface recombination velocity at the silicon-metal interface increased from 353 to 599 cm/s and the open-circuit voltage of the PERC solar cell decreased from 659.7 to 647 mV. Technology Computer-Aided Design (TCAD) simulation was used for detailed analysis on the effect of the surface recombination velocity at the silicon-metal interface on the PERC solar cell performance. Simulations showed that the increase in the distribution of Ag crystallites and surface recombination velocity at the silicon-metal interface played an important role in the decrease of open-circuit voltage of the PERC solar cell at temperatures of 850–900 ∘C, whereas the damage caused by the emitter over fire was determined as the main cause of the voltage drop at 950 ∘C. These results are expected to serve as a steppingstone for further research on improvement in the silicon-metal interface properties of silicon-based solar cells and investigation on high-efficiency solar cells.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 366
Author(s):  
Yang Xia ◽  
Yun Tian ◽  
Lanbin Zhang ◽  
Zhihao Ma ◽  
Huliang Dai ◽  
...  

We present an optimized flutter-driven triboelectric nanogenerator (TENG) for wind energy harvesting. The vibration and power generation characteristics of this TENG are investigated in detail, and a low cut-in wind speed of 3.4 m/s is achieved. It is found that the air speed, the thickness and length of the membrane, and the distance between the electrode plates mainly determine the PTFE membrane’s vibration behavior and the performance of TENG. With the optimized value of the thickness and length of the membrane and the distance of the electrode plates, the peak open-circuit voltage and output power of TENG reach 297 V and 0.46 mW at a wind speed of 10 m/s. The energy generated by TENG can directly light up dozens of LEDs and keep a digital watch running continuously by charging a capacitor of 100 μF at a wind speed of 8 m/s.


Vacuum ◽  
2016 ◽  
Vol 128 ◽  
pp. 91-98 ◽  
Author(s):  
Sheng Ge ◽  
Haitao Xu ◽  
Wenzhen Wang ◽  
Runan Cao ◽  
Yanglin Wu ◽  
...  

2009 ◽  
Vol 48 (24) ◽  
pp. 4402-4405 ◽  
Author(s):  
Elizabeth A. Gibson ◽  
Amanda L. Smeigh ◽  
Loïc Le Pleux ◽  
Jérôme Fortage ◽  
Gerrit Boschloo ◽  
...  

2015 ◽  
Vol 5 (4) ◽  
pp. 682-694 ◽  
Author(s):  
Lu Wang ◽  
Jianshu Han ◽  
Anthony Lochtefeld ◽  
Andrew Gerger ◽  
Allen Barnett

2021 ◽  
pp. 1-12
Author(s):  
Ting Zhao ◽  
Kewen Li ◽  
Yuhao Zhu ◽  
Lin Jia ◽  
Xiaoyong Hou ◽  
...  

Abstract Thermoelectric generators (TEG) are widely used in many industries. The voltage and output power of TEG chips are critical indicators to evaluate the performance of TEGs. The conventional method is to directly test the output voltage and power of the whole TEG chip that contains 127 pairs of PN (P- and N-type) legs (127-PN-TEG). However, the assembling of these PN legs is very time-consuming. In order to reduce experimental time and the consumption of TEG materials, we proposed an experimental method. We developed the test apparatus for the rapid evaluation of TEG performance using a TEG chip with a single pair of PN legs (1-PN-TEG). We made several 1-PN-TEGs and 127-PN-TEGs using the same thermoelectric material (bismuth telluride). We then measured the voltage and the power of these 1-PN-TEGs and 127-PN-TEGs, respectively. The experimental results were compared and analyzed. The comparison showed that the voltage of 127-PN-TEG is equal to the voltage of 1-PN-TEG times 127, which implies that we could use the test data of 1-PN-TEG to evaluate the performance of 127-PN-TEG. Using the experimental device developed in this paper, we also studied the effects of the PN leg area (cross-sectional area of PN legs) and the pressure applied over the TEGs on the output power of 1-PN-TEG. The experimental results showed that the power per unit area decreases with an increase in the 1-PN-TEG's PN leg area when the temperature difference between the hot and cold sides was constant. Under a specific temperature difference conditions, the open-circuit voltage and the output power will increase with the pressure applied on the TEG chips.


Sign in / Sign up

Export Citation Format

Share Document