Clopidogrel inhibits platelet-leukocyte adhesion and plateletdependent leukocyte activation

2005 ◽  
Vol 94 (09) ◽  
pp. 568-577 ◽  
Author(s):  
Stefano Manarini ◽  
Giuseppe Dell’Elba ◽  
Nicola Martelli ◽  
Emanuela Napoleone ◽  
Angelomaria Di Santo ◽  
...  

SummaryClopidogrel is considered to be an important therapeutic advance in anti-platelet therapy. We investigated whether inhibition by clopidogrel results in a reduced capacity of platelets to adhere and stimulate pro-atherothrombotic and inflammatory functions in polymorphonuclear leukocytes (PMN) and in monocytes (MN). An eventual effect on these processes could further substantiate anti-atherothrombotic properties of this drug. The effects of clopidogrel or of its active metabolite were investigated on ADP or thrombin receptor-induced platelet activation and on platelet-leukocyte interactions ex vivo in the mouse or in vitro in isolated human cells or whole blood, respectively. Clopidogrel inhibited platelet aggregation, expression of P-selectin, platelet-PMN adhesion and platelet-dependent ROS production in mouse PMN. Similarly pretreatment of human platelets with the active metabolite of clopidogrel in vitro resulted in a profound inhibition of platelet P-selectin expression, platelet-PMN adhesion and production of ROS by PMN. Pretreatment with the active metabolite of clopidogrel significantly impaired the ability of platelets to up-regulate the expression of TF procoagulant activity in MN, in a washed cell system. Moreover, the active metabolite of clopidogrel inhibited rapidTF exposure on platelet as well as on leukocyte surfaces in whole blood. By reducing platelet-dependent up-regulation of inflammatory and pro-atherothrombotic functions in leukocytes, clopidogrel may reduce inflammation that underlies the chronic process of atherosclerosis and its acute complications.

1992 ◽  
Vol 67 (01) ◽  
pp. 126-130 ◽  
Author(s):  
Olivier Spertini ◽  
Jacques Hauert ◽  
Fedor Bachmann

SummaryPlatelet function defects observed in chronic alcoholics are not wholly explained by the inhibitory action of ethanol on platelet aggregation; they are not completely reproduced either in vivo by short-term ethanol perfusion into volunteers or in vitro by the addition of ethanol to platelet-rich plasma. As acetaldehyde (AcH) binds to many proteins and impairs cellular activities, we investigated the effect of this early degradation product of ethanol on platelets. AcH formed adducts with human platelets at neutral pH at 37° C which were stable to extensive washing, trichloracetic acid hydrolysis and heating at 100° C, and were not reduced by sodium borohydride. The amount of platelet adducts formed was a function of the incubation time and of the concentration of AcH in the reaction medium. At low AcH concentrations (<0.2 mM), platelet bound AcH was directly proportional to the concentration of AcH in the reaction medium. At higher concentrations (≥0.2 mM), AcH uptake by platelets tended to reach a plateau. The amount of adducts was also proportional to the number of exposures of platelets to pulses of 20 pM AcH.AcH adducts formation severely impaired platelet aggregation and shape change induced by ADP, collagen and thrombin. A positive correlation was established between platelet-bound AcH and inhibition of aggregation.SDS-PAGE analysis of AcH adducts at neutral pH demonstrated the binding of [14C]acetaldehyde to many platelet proteins. AcH adduct formation with membrane glycoproteins, cytoskeleton and enzymes might interfere with several steps of platelet activation and impair platelet aggregation.This in vitro study shows that AcH has a major inhibitory action on platelet aggregation and may account for the prolonged ex vivo inhibition of aggregation observed in chronic alcoholics even in the absence of alcoholemia.


1994 ◽  
Vol 72 (05) ◽  
pp. 685-692 ◽  
Author(s):  
Michael T Nurmohamed ◽  
René J Berckmans ◽  
Willy M Morriën-Salomons ◽  
Fenny Berends ◽  
Daan W Hommes ◽  
...  

SummaryBackground. Recombinant hirudin (RH) is a new anticoagulant for prophylaxis and treatment of venous and arterial thrombosis. To which extent the activated partial thromboplastin time (APTT) is suitable for monitoring of RH has not been properly evaluated. Recently, a capillary whole blood device was developed for bed-side monitoring of the APTT and it was demonstrated that this device was suitable to monitor heparin therapy. However, monitoring of RH was not evaluated.Study Objectives. To evaluate in vitro and ex vivo the responsiveness and reproducibility for hirudin monitoring of the whole blood monitor and of plasma APTT assays, which were performed with several reagents and two conventional coagulometers.Results. Large interindividual differences in hirudin responsiveness were noted in both the in vitro and the ex vivo experiments. The relationship between the APTT, expressed as clotting time or ratio of initial and prolonged APTT, and the hirudin concentration was nonlinear. A 1.5-fold increase of the clotting times was obtained at 150-200 ng/ml plasma. However, only a 2-fold increase was obtained at hirudin levels varying from 300 ng to more than 750 ng RH/ml plasma regardless of the assays. The relationship linearized upon logarithmic conversion of the ratio and the hirudin concentration. Disregarding the interindividual differences, and presuming full linearity of the relationship, all combinations were equally responsive to hirudin.Conclusions. All assays were equally responsive to hirudin. Levels up to 300 ng/ml plasma can be reliably estimated with each assay. The manual device may be preferable in situations where rapid availability of test results is necessary.


1997 ◽  
Vol 77 (05) ◽  
pp. 0920-0925 ◽  
Author(s):  
Bernd Pötzsch ◽  
Katharina Madlener ◽  
Christoph Seelig ◽  
Christian F Riess ◽  
Andreas Greinacher ◽  
...  

SummaryThe use of recombinant ® hirudin as an anticoagulant in performing extracorporeal circulation systems including cardiopulmonary bypass (CPB) devices requires a specific and easy to handle monitoring system. The usefulness of the celite-induced activated clotting time (ACT) and the activated partial thromboplastin time (APTT) for r-hirudin monitoring has been tested on ex vivo blood samples obtained from eight patients treated with r-hirudin during open heart surgery. The very poor relationship between the prolongation of the ACT and APTT values and the concentration of r-hirudin as measured using a chromogenic factor Ila assay indicates that both assays are not suitable to monitor r-hirudin anticoagulation. As an alternative approach a whole blood clotting assay based on the prothrombin-activating snake venom ecarin has been tested. In vitro experiments using r-hirudin- spiked whole blood samples showed a linear relationship between the concentration of hirudin added and the prolongation of the clotting times up to a concentration of r-hirudin of 4.0 µg/ml. Interassay coefficients (CV) of variation between 2.1% and 5.4% demonstrate the accuracy of the ecarin clotting time (ECT) assay. Differences in the interindividual responsiveness to r-hirudin were analyzed on r-hirudin- spiked blood samples obtained from 50 healthy blood donors. CV- values between 1.8% and 6% measured at r-hirudin concentrations between 0.5 and 4 µg/ml indicate remarkably slight differences in r-hirudin responsiveness. ECT assay results of the ex vivo blood samples linearily correlate (r = 0.79) to the concentration of r-hirudin. Moreover, assay results were not influenced by treatment with aprotinin or heparin. These findings together with the short measuring time with less than 120 seconds warrant the whole blood ECT to be a suitable assay for monitoring of r-hirudin anticoagulation in cardiac surgery.


1985 ◽  
Vol 54 (04) ◽  
pp. 799-803 ◽  
Author(s):  
José Luís Pérez-Requejo ◽  
Justo Aznar ◽  
M Teresa Santos ◽  
Juana Vallés

SummaryIt is shown that the supernatant of unstirred whole blood at 37° C, stimulated by 1 μg/ml of collagen for 10 sec, produces a rapid generation of pro and antiaggregatory compounds with a final proaggregatory activity which can be detected for more than 60 min on a platelet rich plasma (PRP) by turbidometric aggregometry. A reversible aggregation wave that we have called BASIC wave (for Blood Aggregation Stimulatory and Inhibitory Compounds) is recorded. The collagen stimulation of unstirred PRP produces a similar but smaller BASIC wave. BASIC’s intensity increases if erythrocytes are added to PRP but decreases if white blood cells are added instead. Aspirin abolishes “ex vivo” the ability of whole blood and PRP to generate BASIC waves and dipyridamole “in vitro” significantly reduces BASIC’s intensity in whole blood in every tested sample, but shows little effect in PRP.


1983 ◽  
Vol 50 (04) ◽  
pp. 852-856 ◽  
Author(s):  
P Gresele ◽  
C Zoja ◽  
H Deckmyn ◽  
J Arnout ◽  
J Vermylen ◽  
...  

SummaryDipyridamole possesses antithrombotic properties in the animal and in man but it does not inhibit platelet aggregation in plasma. We evaluated the effect of dipyridamole ex vivo and in vitro on platelet aggregation induced by collagen and adenosine- 5’-diphosphate (ADP) in human whole blood with an impedance aggregometer. Two hundred mg dipyridamole induced a significant inhibition of both ADP- and collagen-induced aggregation in human blood samples taken 2 hr after oral drug intake. Administration of the drug for four days, 400 mg/day, further increased the antiplatelet effect. A significant negative correlation was found between collagen-induced platelet aggregation in whole blood and dipyridamole levels in plasma (p <0.001). A statistically significant inhibition of both collagen (p <0.0025) and ADP-induced (p <0.005) platelet aggregation was also obtained by incubating whole blood in vitro for 2 min at 37° C with dipyridamole (3.9 μM). No such effects were seen in platelet-rich plasma, even after enrichment with leukocytes. Low-dose adenosine enhanced in vitro inhibition in whole blood.Our results demonstrate that dipyridamole impedes platelet aggregation in whole blood by an interaction with red blood cells, probably involving adenosine.


Anaesthesia ◽  
2003 ◽  
Vol 58 (4) ◽  
pp. 312-319 ◽  
Author(s):  
N. A. Horn ◽  
L. De Rossi ◽  
T. Robitzsch ◽  
K. E. Hecker ◽  
G. Hutschenreuter ◽  
...  

1988 ◽  
Vol 59 (03) ◽  
pp. 378-382 ◽  
Author(s):  
Gyorgy Csako ◽  
Eva A Suba ◽  
Ronald J Elin

SummaryThe effect of purified bacterial endotoxin was studied on human platelets in vitro. In adding up to 1 μg/mL of a highly purified endotoxin, we found neither aggregation nor ATP release in heparinized or citrated human platelet-rich plasma. On the other hand, endotoxin at concentrations as low as a few ng/mL (as may be found in septic patients) caused platelet aggregation in both heparinized and citrated human whole blood, as monitored by change in impedance, free platelet count, and size. Unlike collagen, the platelet aggregation with endotoxin occurred after a long lag phase, developed slowly, and was rarely coupled with measurable release of ATP. The platelet aggregating effect of endotoxin was dose-dependent and modified by exposure of the endotoxin to ionizing radiation. Thus, the activation of human platelets by “solubilized” endotoxin in plasma requires the presence of other blood cells. We propose that the platelet effect is mediated by monocytes and/or neutrophils stimulated by endotoxin.


2007 ◽  
Vol 98 (12) ◽  
pp. 1276-1284 ◽  
Author(s):  
Simona Costanzo ◽  
Branislav Vohnout ◽  
Licia Iacoviello ◽  
Giovanni de Gaetano ◽  
Benedetta Izzi ◽  
...  

SummaryFollowing preliminary in-vitro experiments, platelet-leukocyte conjugates and their determinants were evaluated in citrated whole blood from 349 subjects (209 women, age 16–92 years) randomly recruited from the general population. Platelet activation by ADP/collagen but not leukocyte stimulation by fMLP or LTB4 resulted in formation of platelet conjugates with PMN or monocytes. In the population study, mixed cell conjugates, platelet P-selectin and leukocyte CD11b were measured by flow cytometry both at baseline and after in-vitro stimulation with ADP/collagen. The latter significantly increased platelet conjugates with either PMN or monocytes, platelet P-selectin and leukocyte CD11b expression. Platelet count significantly correlated with platelet-PMN, platelet-monocyte conjugates and P-selectin both at baseline and upon stimulation. In all conditions, both conjugate levels correlated with each other, when adjusted for gender, age and platelet count. Age correlated with platelet-PMN conjugate numbers in basal and stimulated conditions and with basal P-selectin. ADP/collagen stimulation resulted in higher P-selectin and conjugates values in women. Among risk factors, a significant correlation was found between conjugate and glucose levels. In conclusion, the presence and formation in whole blood from a large population of plateletleukocyte conjugates reflects primary platelet – but not leukocyte – activation and varies with gender, age, platelet count and blood glucose.


1977 ◽  
Author(s):  
K. Subbarao ◽  
B. Rucinski ◽  
A. Summers ◽  
S. Niewiarowski

The interactions of dipyridamole with α1-acid glycoprotein of plasma and with human platelets are related to inhibition of adenosine uptake by platelets. One mole of dipyridamole binds to one mole of α1-acid glycoprotein with a dissociation constant (Kd) of 1.3 μM. It was found that platelets contain both high and low affinity binding sites for the drug. The binding of dipyridamole to the high affinity sites follows a Michaelis Menten binding pattern with a Kd of 0.04 μM. Approximately 2x104 dipyridamole molecules are bound at the high affinity sites of each platelet. The lower affinity sites bind the drug with a Kd of 4 μM. In the presence of α1acid glycoprotein the binding of dipyridamole to platelets is inhibited. Correspondingly, the dipyridamole inhibition of adenosine uptake by platelets is reduced 1000-fold by α1acid glycoprotein. Binding of dipyridamole to human platelets is essential for its inhibition of adenosine uptake by platelets. Dipyridamole reduced the [14C]-ATP to [14C]-ADP ratio in the platelets. Purified α1acid glycoprotein reversed these effects of dipyridamole on adenosine metabolism of platelets in a concentration dependent manner. A correlationwas observed between the level of circulating dipyridamole in plasma and the inhibition of [14C]-adenosine uptake by platelets of PRP samples of 12 human volunteers given different amounts of dipyridamole. The in vitro and ex vivo effects of dipyridamole on the [14C]-adenosine uptake by platelets were found to be identical. Our data suggest the presence of dipyridamole binding sites in platelets that regulate adenosine transport across the cell surface.


Sign in / Sign up

Export Citation Format

Share Document