An atypical IgM class platelet cold agglutinin induces GPVI-dependent aggregation of human platelets

2015 ◽  
Vol 114 (08) ◽  
pp. 313-324 ◽  
Author(s):  
Isabel Sánchez Guiu ◽  
Irene Martínez-Martinez ◽  
Constantino Martínez ◽  
José Navarro-Fernandez ◽  
Faustino Garcia-Candel ◽  
...  

SummaryPlatelet cold agglutinins (PCA) cause pseudothrombocytopenia, spurious thrombocytopenia due to ex vivo platelet clumping, complicating clinical diagnosis, but mechanisms and consequences of PCA are not well defined. Here, we characterised an atypical immunoglobulin (Ig)M PCA in a 37-year-old woman with lifelong bleeding and chronic moderate thrombocytopenia, that induces activation and aggregation of autologous or allogeneic platelets via interaction with platelet glycoprotein (GP)VI. Patient temperature-dependent pseudothrombocytopenia was EDTA-independent, but was prevented by integrin αIIbβ3 blockade. Unstimulated patient platelets revealed elevated levels of bound IgM, increased expression of activation markers (P-selectin and CD63), low GPVI levels and abnormally high thromboxane (TX)A2 production. Patient serum induced temperature- and αIIbβ3-dependent decrease of platelet count in allogeneic donorcitrated platelet-rich plasma (PRP), but not in PRP from Glanzmann’s thrombasthenia or afibrinogenaemia patients. In allogeneic platelets, patient plasma induced shape change, P-selectin and CD63 expression, 14C-serotonin release, and TXA2 production. Activation was not inhibited by aspirin, cangrelor or blocking anti-Fc receptor (FcγRIIA) antibody, but was abrogated by inhibitors of Src and Syk, and by a soluble GPVI-Fc fusion protein. GPVI-deficient platelets were not activated by patient plasma. These data provide the first evidence for an IgM PCA causing platelet activation/aggregation via GPVI. The PCA activity persisted over a five-year follow-up period, supporting a causative role in patient chronic thrombocytopenia and bleeding.

1992 ◽  
Vol 67 (01) ◽  
pp. 126-130 ◽  
Author(s):  
Olivier Spertini ◽  
Jacques Hauert ◽  
Fedor Bachmann

SummaryPlatelet function defects observed in chronic alcoholics are not wholly explained by the inhibitory action of ethanol on platelet aggregation; they are not completely reproduced either in vivo by short-term ethanol perfusion into volunteers or in vitro by the addition of ethanol to platelet-rich plasma. As acetaldehyde (AcH) binds to many proteins and impairs cellular activities, we investigated the effect of this early degradation product of ethanol on platelets. AcH formed adducts with human platelets at neutral pH at 37° C which were stable to extensive washing, trichloracetic acid hydrolysis and heating at 100° C, and were not reduced by sodium borohydride. The amount of platelet adducts formed was a function of the incubation time and of the concentration of AcH in the reaction medium. At low AcH concentrations (<0.2 mM), platelet bound AcH was directly proportional to the concentration of AcH in the reaction medium. At higher concentrations (≥0.2 mM), AcH uptake by platelets tended to reach a plateau. The amount of adducts was also proportional to the number of exposures of platelets to pulses of 20 pM AcH.AcH adducts formation severely impaired platelet aggregation and shape change induced by ADP, collagen and thrombin. A positive correlation was established between platelet-bound AcH and inhibition of aggregation.SDS-PAGE analysis of AcH adducts at neutral pH demonstrated the binding of [14C]acetaldehyde to many platelet proteins. AcH adduct formation with membrane glycoproteins, cytoskeleton and enzymes might interfere with several steps of platelet activation and impair platelet aggregation.This in vitro study shows that AcH has a major inhibitory action on platelet aggregation and may account for the prolonged ex vivo inhibition of aggregation observed in chronic alcoholics even in the absence of alcoholemia.


1988 ◽  
Vol 60 (02) ◽  
pp. 209-216 ◽  
Author(s):  
Chantal Lalau Keraly ◽  
Raelene L Kinlough-Rathbone ◽  
Marian A Packham ◽  
Hidenori Suzuki ◽  
J Fraser Mustard

SummaryConditions affecting the responses of human platelets to epinephrine were examined. In platelet-rich plasma prepared from blood anticoagulated with hirudin or PPACK (D-pheny- lalanyl-L-prolyl-L-arginine chloromethyl ketone), epinephrine did not cause shape change or aggregation. In a Tyrode-albumin- apyrase solution containing a concentration of Ca2+ in the physiological range, and fibrinogen, epinephrine in concentrations as high as 40 μM did not induce platelet shape change, caused either no primary aggregation or very slight primary aggregation, and did not induce thromboxane formation, release of dense granule contents, or secondary aggregation. In contrast, in citrated platelet-rich plasma, epinephrine induced two phases of aggregation. This is not attributable to the generation of traces of thrombin since the same effects were evident when blood was taken into a combined citrate-hirudin anticoagulant or a combined citrate-PPACK anticoagulant. In a modified Tyrode-albu- min-apyrase solution containing approximately 20 μM Ca2+, 1 mM Mg2+, and fibrinogen, epinephrine induced extensive aggregation after a lag phase, but no primary phase was evident; thromboxane formation and release of dense granule contents accompanied the aggregation response. These responses were also observed when PPACK was included with the acid-citrate- dextrose anticoagulant, and in the washing and resuspending fluids. In the presence of aspirin or the thromboxane receptor blocker BM 13.177 a few small aggregates were detected by particle counting and by scanning electron microscopy; with the latter inhibitor, the platelets in the aggregates retained their disc shape; secondary aggregation and the responses associated with it did not occur. Thus thromboxane A2 formation is not necessary for the formation of these small aggregates, but is required for extensive aggregation and release. As with other weak agonists, the close platelet-to-platelet contact in the low Ca2+ medium appears to be necessary for full secondary aggregation. Omission of fibrinogen from the low Ca2+ medium prevented both primary and secondary aggregation in response to epinephrine. An antibody (10E5) to the glycoprotein Ilb/IIIa complex was completely inhibitory in the presence of fibrinogen. Thus the response of human platelets to epinephrine is influenced by the concentration of Ca2+ and the presence of fibrinogen in the medium in which they are suspended.


1981 ◽  
Vol 45 (01) ◽  
pp. 027-033 ◽  
Author(s):  
K Sugiura ◽  
M Steiner ◽  
M Baldini

SummaryThe function of nonimmune IgG associated with platelets is unknown. In a series of experiments we have investigated this problem, relating amount of platelet-associated IgG (PAIgG) to platelet volume, serotonin release, adherence of platelets to monocytes and platelet senescence. Most of these studies were performed with human platelets. Platelets freed of preexisting PAIgG by incubation at 22° C were incubated with IgG in a series of concentrations ranging from 0.4 — 27.0 X10-6 M. The IgG preparations used were demonstrably free of aggregated forms of the protein. The amount of PAIgG bound to platelets was determined by the use of fluorescein isothiocyanate-conjugated anti-IgG antibody (F-anti-IgG antibody) which was quantified in a fluorospectrophotometer. Newly bound IgG was assayed similarly by the use of F-IgG. A dose-dependent increase in platelet volume was associated with the binding of nonimmune IgG by platelets. The process which leveled off at an IgG concentration of 1.2 —1.5 X10-5 M was almost fully reversible and was not due to platelet shape change or aggregation. Release of serotonin from IgG-treated platelets was relatively small but to the extent that it occurred was positively related to the IgG concentration to which platelets were exposed. Adherence to autologous monocytes studied quantitatively by the use of formaldehyde-fixed cells was also positively related to the amount of IgG on the platelets. Normal or IgG-defident serum had a potent inhibitory (noncompetitive) action on the binding of F-IgG and F-anti-human IgG antibody to human platelets. Cohorts of platelets prepared in rabbits during the recovery phase of immunological thrombocytopenia induced by injection of heterologous antiserum, showed an age-dependent increase of PAIgG and of IgG binding. These results suggest that PAIgG plays a role in the clearance of senescent platelets.


1984 ◽  
Vol 52 (03) ◽  
pp. 333-335 ◽  
Author(s):  
Vider M Steen ◽  
Holm Holmsen

SummaryThe inhibitory effect of cAMP-elevating agents on shape change and aggregation in human platelets was studied to improve the understanding of the sequential relationship between these two responses.Human platelet-rich plasma was preincubated for 2 min at 37° C with prostaglandin E1 or adenosine, agents known to elevate the intracellular level of cAMP. Their inhibitory effects on ADP-induced shape change and aggregation were determined both separately and simultaneously. The dose-inhibition patterns for shape change and aggregation were similar for both PGE1 and adenosine. There was no distinct difference between the inhibitory action of these two inhibitors.These observations suggest that elevation of the intracellular concentration of cAMP interferes with an early step in the stimulus-response coupling that is common for aggregation and shape change.


2019 ◽  
Vol 20 (20) ◽  
pp. 5040 ◽  
Author(s):  
Thien Ngo ◽  
Keunyoung Kim ◽  
Yiying Bian ◽  
Hakjun Noh ◽  
Kyung-Min Lim ◽  
...  

Antiplatelet agents are important in the pharmacotherapeutic regime for many cardiovascular diseases, including thrombotic disorders. However, bleeding, the most serious adverse effect associated with current antiplatelet therapy, has led to many efforts to discover novel anti-platelet drugs without bleeding issues. Of note, shear stress-induced platelet aggregation (SIPA) is a promising target to overcome bleeding since SIPA happens only in pathological conditions. Accordingly, this study was carried out to discover antiplatelet agents selectively targeting SIPA. By screening various herbal extracts, Paeonia suffruticosa and its major bioactive constituent, paeoniflorin, were identified to have significant inhibitory effects against shear-induced aggregation in human platelets. The effects of paeoniflorin on intraplatelet calcium levels, platelet degranulation, and integrin activation in high shear stress conditions were evaluated by a range of in vitro experiments using human platelets. The inhibitory effect of paeoniflorin was determined to be highly selective against SIPA, through modulating von Willebrand Factor (vWF)-platelet glycoprotein Ib (GP Ib) interaction. The effects of paeoniflorin on platelet functions under high shear stress were confirmed in the ex vivo SIPA models in rats, showing the good accordance with the anti-SIPA effects on human platelets. Treatment with paeoniflorin significantly prevented arterial thrombosis in vivo from the dose of 10 mg/kg without prolonging bleeding time or blood clotting time in rats. Collectively, our results demonstrated that paeoniflorin can be a novel anti-platelet agent selectively targeting SIPA with an improved safety profile.


1977 ◽  
Author(s):  
G. R. Favis ◽  
R. W. Colman

Halofenate (Hal) has previously been shown to inhibit epinephrine (Epi) and ADP induced platelet aggregation and C14-serotonin release. We further investigated the site of action of Hal by examining platelet shape change as a membrane event and malondialdehyde (MDA) formation as a measure of prostaglandin synthesis. Platelet-rich-plasma (PRP) with and without Hal wasdiluted in an EDTA buffer and examined in a spectrophotometer modified for stirring and maintained at 37°. ADP induced increase in absorbance was recorded and the velocity of the shape change curve was plotted against ADP concentration. MDA production was measured by the thiobarbituric acid assay and utilized a DEAE-52 cellulose column to concentrate the chromogen. Hal in pharmacologic concentrations (.96mM) had no effect on Epi induced primary aggregation or on ADP induced shape change. However, at higher than pharmacologic amounts (3.36mM), Hal did inhibit ADP induced shape change. Epi-induced MDA formation (.18μM-.33μM) normally occurs concomitant with the second phase of aggregation and serotonin release but was markedly decreased by Hal (.06μM-.085μM). This inhibition was not due to a direct effect on prostaglandin synthesis since sodium arachi-donate (1mM) caused secondary aggregation in PRP treated with Hal but not PRP treated with aspirin (4mM). Hal (.96mM) does not seem to inhibit platelet aggregation through an inhibition of ADP induced shape change or of Epi induced primary aggregation. Since Hal treated platelets respond to arachidonate, Hal must work at some earlier step than arachidonate induced prostaglandin synthesis. We suggest that this may be an alteration of the platelet membrane structure which makes ADP and Epi binding sites less accessible or which impairs arachidonic acid release by phospholipase. Decreased MDA formation and inhibition of aggregation would then be secondary to this membrane change.


Blood ◽  
1977 ◽  
Vol 49 (1) ◽  
pp. 101-112 ◽  
Author(s):  
JH Joist ◽  
G Dolezel ◽  
MP Cucuianu ◽  
EE Nishizawa ◽  
JF Mustard

Abstract The effects of lysolecithin (LPC) on aggregation, serotonin release, shape, and lysis of rabbit, pig, or human platelets in platelet-rich plasma (PRP) or Tyrode albumin solution were examined during prolonged incubation. LPC added to citrated or heparinized PRP from humans or rabbits at a final concentration above 100 muM caused instantaneous inhibition of platelet aggregation induced by adenosine diphosphate (ADP), epinephrine (human PRP only), collagen, or thrombin. The inhibitory effect of LPC was found to be partially reversible over a period of 60–90 min. LPC at final concentrations above 30 muM also caused inhibition of ADP-, collagen-, and thrombin-induced aggregation and collagen- and thrombin-induced release of serotonin in suspensions of rabbit, pig, or human platelets. With washed platelets, the inhibitory effect not only rapidly disappeared but was followed by transient potentiation of aggregation and serotonin release. This potentiating effect of LPC was most pronounced when thrombin was used as stimulus. Both inhibition and potentiation were observed at concentrations of LPC that did not cause a significant change in platelet shape or loss from platelets of lactic dehydrogenase. Inhibition and potentiation were also observed when platelets were added to suspending medium containing LPC, although considerably higher concentrations of LPC were required under these conditions. Potentiation was not observed when LPC was added to citrated or heparinized rabbit or human PRP or to washed rabbit platelets suspended in a medium containing 4% bovine serum albumin. It seemed likely that some or all of the observed effects of LPC on platelet function were due to structural modification of the platelet membrane insufficient to result in gross membrane damage or platelet lysis. In addition, the results of experiments using 14C-LPC seemed to indicate that the observed potentiating effect of LPC on platelet function may be related to its rapid uptake and metabolism by the platelets.


1977 ◽  
Author(s):  
M. Kazatchkine ◽  
J. Caen ◽  
Anthea H. Johnson ◽  
J.F. Mowbray

In order to study the nature of receptors for immune complexes (IC) on the surface of platelets, the release of radiolabelled serotonin produced by exposure of platelets to IC of known composition was studied. Free plasma components might alter this reaction, so platelets were used both in platelet rich plasma (PRP) and after gel filtration. As it has been thought that the aggregation of the immunoglobulin molecules through the antigen was neccessary for the release reaction, we have studied complexes made with antigens of different valencies. The antigen was albumen substituted with different numbers of dinitrophenol (DNP) groups, and the antibody rabbit-anti DNP. Polyvalent antigen complexes were also made from bovine serum albumen (BSA) and rabbit anti-BSA antibody. Soluble and insoluble IC made in a variety of ratios with polyvalent antigen induced release both in PRP and in gel filtered platelets. Soluble complexes in antigen excess were the most effective. Complexes of monovalent antigen prepared, using two methods of monovalent substitution, were also capable of inducing release in PRP and in gel filtered platelets, although the complex could not exist in an aggregated form. Release was less than that produced by polyvalent complex, but could be increased by the addition of CI.These results show that, at least with monovalent IC, the simultaneous involvement of more than one receptor is not an absolute requirement for platelet release. These receptors for monovalent complexes could be different from the Fc receptors for aggregated immunoglobulins or polyvalent complexes.


Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4486-4493 ◽  
Author(s):  
Gregor Theilmeier ◽  
Carine Michiels ◽  
Erik Spaepen ◽  
Ingrid Vreys ◽  
Désiré Collen ◽  
...  

Platelets are thought to play a causal role during atherogenesis. Platelet-endothelial interactions in vivo and their molecular mechanisms under shear are, however, incompletely characterized. Here, an in vivo platelet homing assay was used in hypercholesterolemic rabbits to track platelet adhesion to plaque predilection sites. The role of platelet versus aortic endothelial cell (EC) activation was studied in an ex vivo flow chamber. Pathways of human platelet immobilization were detailed during in vitro perfusion studies. In rabbits, a 0.125% cholesterol diet induced no lesions within 3 months, but fatty streaks were found after 12 months. ECs at segmental arteries of 3- month rabbits expressed more von Willebrand factor (VWF) and recruited 5-fold more platelets than controls (P &lt; .05, n = 5 and 4, respectively). The 3-month ostia had an increased likelihood to recruit platelets compared to control ostia (56% versus 18%, P &lt; .0001, n = 89 and 63, respectively). Ex vivo, the adhesion of 3-month platelets to 3-month aortas was 8.4-fold increased compared to control studies (P &lt; .01, n = 7 and 5, respectively). In vitro, endothelial VWF–platelet glycoprotein (GP) Ib and platelet P-selectin– endothelial P-selectin glycoprotein ligand 1 interactions accounted in combination for 83% of translocation and 90% of adhesion (P &lt; .01, n = 4) of activated human platelets to activated human ECs. Platelet tethering was mainly mediated by platelet GPIbα, whereas platelet GPIIb/IIIa contributed 20% to arrest (P &lt; .05). In conclusion, hypercholesterolemia primes platelets for recruitment via VWF, GPIbα, and P-selectin to lesion-prone sites, before lesions are detectable.


Sign in / Sign up

Export Citation Format

Share Document