Antiphospholipid antibodies in a large population-based cohort: genome-wide associations and effects on monocyte gene expression

2016 ◽  
Vol 116 (07) ◽  
pp. 115-123 ◽  
Author(s):  
Nadine Müller-Calleja ◽  
Heidi Rossmann ◽  
Christian Müller ◽  
Philipp Wild ◽  
Stefan Blankenberg ◽  
...  

SummaryThe antiphospholipid syndrome (APS) is characterised by venous and/ or arterial thrombosis and pregnancy morbidity in women combined with the persistent presence of antiphospholipid antibodies (aPL). We aimed to identify genetic factors associated with the presence of aPL in a population based cohort. Furthermore, we wanted to clarify if the presence of aPL affects gene expression in circulating monocytes. Titres of IgG and IgM against cardiolipin, D2glycoprotein 1 (antiD2GPI), and IgG against domain 1 of D2GPI (anti-domain 1) were determined in approx. 5,000 individuals from the Gutenberg Health Study (GHS) a population based cohort of German descent. Genotyping was conducted on Affymetrix Genome-Wide Human SNP 6.0 arrays. Monocyte gene expression was determined in a subgroup of 1,279 individuals by using the Illumina HT-12 v3 BeadChip. Gene expression data were confirmed in vitro and ex vivo by qRT-PCR. Genome wide analysis revealed significant associations of anti-D2GPI IgG and APOH on chromosome 17, which had been previously identified by candidate gene approaches, and of anti-domain1 and MACROD2 on chromosome 20 which has been listed in a previous GWAS as a suggestive locus associated with the occurrence of anti-D2GPI antibodies. Expression analysis confirmed increased expression of TNFD in monocytes and identified and confirmed neuron navigator 3 (NAV3) as a novel gene induced by aPL. In conclusion, MACROD2 represents a novel genetic locus associated with aPL. Furthermore, we show that aPL induce the expression of NAV3 in monocytes and endothelial cells. This will stimulate further research into the role of these genes in the APS.

Author(s):  
Davit Manukyan ◽  
Heidi Rossmann ◽  
Andreas Schulz ◽  
Tanja Zeller ◽  
Norbert Pfeiffer ◽  
...  

AbstractBackground:Antiphospholipid syndrome (APS) is the most common acquired thrombophilia. Diagnosis is based on clinical criteria and the presence of antiphospholipid antibodies (aPLs) above the 99th percentile of a reference group. Data on the distribution of aPL in the population are limited. The distribution of aPL including diagnostic cutoffs should be determined in a population-based cohort.Methods:The Gutenberg Health Study (GHS) is a population-based cohort aged 35–74 years. We determined the presence of antibodies against cardiolipin (aCL, IgG, and IgM), βResults:aPL titers were similar in the whole sample and in an apparently healthy subgroup of 1049 individuals. There was a strong age-dependent increase of both aCL and anti-β2GPI IgM, while aPL IgG titers were stable or tended to decrease with age. A relevant decrease was observed for aCL IgG in women and anti-domain 1 IgG in both sexes. There was no association of aPL titers with a history of venous thromboembolism (VTE).Conclusions:Our data show that for IgM aPL, age-dependent reference ranges should be used. In fact, the controversy regarding the clinical utility of IgM aPL might be related to the use of inappropriate reference ranges among other causes. In our population, aPLs were not associated with a history of VTE.


2020 ◽  
Author(s):  
Bettina Alexandra Buhren ◽  
Holger Schrumpf ◽  
Katharina Gorges ◽  
Oliver Reiners ◽  
Edwin Boelke ◽  
...  

Abstract Hyaluronic acid (hyaluronan; HA) is an essential component of the extracellular matrix (ECM) of the skin. The HA-degrading enzyme hyaluronidase (HYAL) is critically involved in the HA-metabolism. Yet, only little information is available regarding the skin´s HA-HYAL interactions on the molecular and cellular levels.OBJECTIVETo analyze the dose- and time-dependent molecular and cellular effects of HYAL on structural cells and the HA-metabolism in the skin.MATERIALS AND METHODSChip-based, genome-wide expression analyses (Affymetrix® GeneChip PrimeView™ Human Gene Expression Array), quantitative real-time PCR analyses, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (DAB), and in vitro wound healing assays were performed to assess dose-dependent and time-kinetic effects of HA and HYAL (bovine hyaluronidase, Hylase “Dessau”) on normal human dermal fibroblasts (NHDF), primary human keratinocytes in vitro and human skin samples ex vivo.RESULTSGenome-wide expression analyses revealed an upregulation of HA synthases (HAS) up to 1.8-fold change in HA- and HYAL-treated NHDF. HA and HYAL significantly accelerated wound closure in an in vitro model for cutaneous wound healing. HYAL induced HAS1 and HAS2 mRNA gene expression in NHDF. Interestingly, low concentrations of HYAL (0.015 U/ml) resulted in a significantly higher induction of HAS compared to moderate (0.15 and 1.5 U/ml) and high concentrations (15 U/ml) of HYAL. This observation corresponded to increased concentrations of HA measured by ELISA in conditioned supernatants of HYAL-treated NHDF with the highest concentrations observed for 0.015 U/ml of HYAL. Finally, immunohistochemical analysis of human skin samples incubated with HYAL for up to 48 h ex vivo demonstrated that low concentrations of HYAL (0.015 U/ml) led to a pronounced accumulation of HA, whereas high concentrations of HYAL (15 U/ml) reduced dermal HA-levels.CONCLUSIONHYAL is a bioactive enzyme that exerts multiple effects on the HA-metabolism as well as on the structural cells of the skin. Our results indicate that HYAL promotes wound healing and exerts a dose-dependent induction of HA-synthesis in structural cells of the skin. Herein, interestingly the most significant induction of HAS and HA were observed for the lowest concentration of HYAL.


2019 ◽  
Vol 20 (11) ◽  
pp. 920-933 ◽  
Author(s):  
Lucía Gato-Calvo ◽  
Tamara Hermida-Gómez ◽  
Cristina R. Romero ◽  
Elena F. Burguera ◽  
Francisco J. Blanco

Background: Platelet Rich Plasma (PRP) has recently emerged as a potential treatment for osteoarthritis (OA), but composition heterogeneity hampers comparison among studies, with the result that definite conclusions on its efficacy have not been reached. Objective: 1) To develop a novel methodology to prepare a series of standardized PRP releasates (PRP-Rs) with known absolute platelet concentrations, and 2) To evaluate the influence of this standardization parameter on the anti-inflammatory properties of these PRP-Rs in an in vitro and an ex vivo model of OA. Methods: A series of PRPs was prepared using the absolute platelet concentration as the standardization parameter. Doses of platelets ranged from 0% (platelet poor plasma, PPP) to 1.5·105 platelets/µl. PRPs were then activated with CaCl2 to obtain releasates (PRP-R). Chondrocytes were stimulated with 10% of each PRP-R in serum-free culture medium for 72 h to assess proliferation and viability. Cells were co-stimulated with interleukin (IL)-1β (5 ng/ml) and 10% of each PRP-R for 48 h to determine the effects on gene expression, secretion and intra-cellular content of common markers associated with inflammation, catabolism and oxidative stress in OA. OA cartilage explants were co-stimulated with IL-1β (5 ng/ml) and 10% of either PRP-R with 0.75·105 platelets/µl or PRP-R with 1.5·105 platelets/µl for 21 days to assess matrix inflammatory degradation. Results: Chondrocyte viability was not affected, and proliferation was dose-dependently increased. The gene expression of all pro-inflammatory mediators was significantly and dose-independently reduced, except for that of IL-1β and IL-8. Immunoblotting corroborated this effect for inducible NO synthase (NOS2). Secreted matrix metalloproteinase-13 (MMP-13) was reduced to almost basal levels by the PRP-R from PPP. Increasing platelet dosage led to progressive loss to this anti-catabolic ability. Safranin O and toluidine blue stains supported the beneficial effect of low platelet dosage on cartilage matrix preservation. Conclusion: We have developed a methodology to prepare PRP releasates using the absolute platelet concentration as the standardization parameter. Using this approach, the composition of the resulting PRP derived product is independent of the donor initial basal platelet count, thereby allowing the evaluation of its effects objectively and reproducibly. In our OA models, PRP-Rs showed antiinflammatory, anti-oxidant and anti-catabolic properties. Platelet enrichment could favor chondrocyte proliferation but is not necessary for the above effects and could even be counter-productive.


2021 ◽  
Vol 9 (2) ◽  
pp. 240
Author(s):  
Bruno Cavadas ◽  
Marina Leite ◽  
Nicole Pedro ◽  
Ana C. Magalhães ◽  
Joana Melo ◽  
...  

The continuous characterization of genome-wide diversity in population and case–cohort samples, allied to the development of new algorithms, are shedding light on host ancestry impact and selection events on various infectious diseases. Especially interesting are the long-standing associations between humans and certain bacteria, such as the case of Helicobacter pylori, which could have been strong drivers of adaptation leading to coevolution. Some evidence on admixed gastric cancer cohorts have been suggested as supporting Homo-Helicobacter coevolution, but reliable experimental data that control both the bacterium and the host ancestries are lacking. Here, we conducted the first in vitro coinfection assays with dual human- and bacterium-matched and -mismatched ancestries, in African and European backgrounds, to evaluate the genome wide gene expression host response to H. pylori. Our results showed that: (1) the host response to H. pylori infection was greatly shaped by the human ancestry, with variability on innate immune system and metabolism; (2) African human ancestry showed signs of coevolution with H. pylori while European ancestry appeared to be maladapted; and (3) mismatched ancestry did not seem to be an important differentiator of gene expression at the initial stages of infection as assayed here.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Federico Tinarelli ◽  
Elena Ivanova ◽  
Ilaria Colombi ◽  
Erica Barini ◽  
Edoardo Balzani ◽  
...  

Abstract Background DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period. Methods In this study, we used a combination of in vivo, ex vivo and in vitro approaches. We measured retinal responses in Afh animals and we have run reduced representation bisulphite sequencing (RRBS), pyrosequencing and gene expression analysis in a variety of brain tissues ex vivo. In vitro, we used primary neuronal cultures combined to micro electrode array (MEA) technology and gene expression. Results We observed functional impairments in mutant neuronal networks, and a reduction in the retinal responses to light-dependent stimuli. We detected abnormalities in the expression of photoreceptive melanopsin (OPN4). Furthermore, we identified alterations in the DNA methylation pathways throughout the retinohypothalamic tract terminals and links between the transcription factor Rev-Erbα and Fbxl3. Conclusions The results of this study, primarily represent a contribution towards an understanding of electrophysiological and molecular phenotypic responses to external stimuli in the Afh model. Moreover, as DNA methylation has recently emerged as a new regulator of neuronal networks with important consequences for circadian behaviour, we discuss the impact of the Afh mutation on the epigenetic landscape of circadian biology.


Parasitology ◽  
2009 ◽  
Vol 136 (5) ◽  
pp. 469-485 ◽  
Author(s):  
A. S. TAFT ◽  
J. J. VERMEIRE ◽  
J. BERNIER ◽  
S. R. BIRKELAND ◽  
M. J. CIPRIANO ◽  
...  

SUMMARYInfection of the snail,Biomphalaria glabrata, by the free-swimming miracidial stage of the human blood fluke,Schistosoma mansoni, and its subsequent development to the parasitic sporocyst stage is critical to establishment of viable infections and continued human transmission. We performed a genome-wide expression analysis of theS. mansonimiracidia and developing sporocyst using Long Serial Analysis of Gene Expression (LongSAGE). Five cDNA libraries were constructed from miracidia andin vitrocultured 6- and 20-day-old sporocysts maintained in sporocyst medium (SM) or in SM conditioned by previous cultivation with cells of theB. glabrataembryonic (Bge) cell line. We generated 21 440 SAGE tags and mapped 13 381 to theS. mansonigene predictions (v4.0e) either by estimating theoretical 3′ UTR lengths or using existing 3′ EST sequence data. Overall, 432 transcripts were found to be differentially expressed amongst all 5 libraries. In total, 172 tags were differentially expressed between miracidia and 6-day conditioned sporocysts and 152 were differentially expressed between miracidia and 6-day unconditioned sporocysts. In addition, 53 and 45 tags, respectively, were differentially expressed in 6-day and 20-day cultured sporocysts, due to the effects of exposure to Bge cell-conditioned medium.


2020 ◽  
Vol 46 (5) ◽  
pp. 1045-1052
Author(s):  
Anna R Docherty ◽  
Andrey A Shabalin ◽  
Daniel E Adkins ◽  
Frank Mann ◽  
Robert F Krueger ◽  
...  

Abstract Objective Subthreshold psychosis risk symptoms in the general population may be associated with molecular genetic risk for psychosis. This study sought to optimize the association of risk symptoms with genetic risk for psychosis in a large population-based cohort in the UK (N = 9104 individuals 18–65 years of age) by properly accounting for population stratification, factor structure, and sex. Methods The newly expanded Generation Scotland: Scottish Family Health Study includes 5391 females and 3713 males with age M [SD] = 45.2 [13] with both risk symptom data and genetic data. Subthreshold psychosis symptoms were measured using the Schizotypal Personality Questionnaire-Brief (SPQ-B) and calculation of polygenic risk for schizophrenia was based on 11 425 349 imputed common genetic variants passing quality control. Follow-up examination of other genetic risks included attention-deficit hyperactivity disorder (ADHD), autism, bipolar disorder, major depression, and neuroticism. Results Empirically derived symptom factor scores reflected interpersonal/negative symptoms and were positively associated with polygenic risk for schizophrenia. This signal was largely sex specific and limited to males. Across both sexes, scores were positively associated with neuroticism and major depressive disorder. Conclusions A data-driven phenotypic analysis enabled detection of association with genetic risk for schizophrenia in a population-based sample. Multiple polygenic risk signals and important sex differences suggest that genetic data may be useful in improving future phenotypic risk assessment.


2019 ◽  
Vol 44 (2) ◽  
pp. 277-285
Author(s):  
Patrycja Sosinska-Zawierucha ◽  
Beata Mackowiak ◽  
Andrzej Breborowicz

Background/Aims: Thromboembolic episodes are a frequent problem in end stage renal failure patients. The pathomechanism of the disorder is complex, including bioincompatibility of renal replacement therapy, endothelial dysfunction, increased blood level of procoagulant factors and uremic toxins. We studied changes in the functional properties of venous endothelial cells (VEC) in the presence of uremic serum and evaluated their possible modulation by N-acetylcysteine (NAC) or sulodexide (SUL). Methods: Serum samples from 12 uremic patients treated with hemodialysis were studied ex vivo on in vitro cultured VEC. In separate experiments, NAC 1 mmol/L or SUL 0.5 LRU/mL were added to uremic serum samples. Both changes in the gene expression and secretory activity of VEC were studied. Results: Uremic serum increased the expression of the following genes: IL6 +97%, p < 0.002; VEGF +28%, p < 0.002; vWF +47%, p < 0.002; PECAM +76%, p < 0.002; ICAM-1 +275%, p < 0.002; t-PA +96%, p < 0.002. Changes in gene expression were reflected by the increased secretory activity of VEC treated with the uremic serum. Exposure of VEC to uremic serum supplemented with NAC or SUL resulted in weaker stimulation of the studied genes’ expression. Also, secretion of the studied solutes, with the exception of ICAM-1, was reduced in the presence of NAC: IL6 –34%, p < 0.01; VEGF –40%, p < 0.005; vWF –25%, p < 0.001; t-PA –47%, p < 0.01, and MMP9 –37%, p < 0.001. SUL reduced the uremic serum-induced secretion of all solutes: IL6 –24%, p < 0.05; ICAM-1 –43%, p < 0.01; VEGF –38%, p < 0.01; vWF –23%, p < 0.01; t-PA –49%, p < 0.01, and MMP9 –25%, p < 0.05. Conclusions: Uremic serum induces prothrombotic changes in VEC, which may cause a predisposition to thrombotic disorders in patients with renal failure. NAC and SUL reduce the effects of the uremic serum in VEC, which suggests their potential therapeutic application in uremic patients.


2015 ◽  
Vol 14 (1) ◽  
pp. 110 ◽  
Author(s):  
Stacey A Lapp ◽  
Sachel Mok ◽  
Lei Zhu ◽  
Hao Wu ◽  
Peter R Preiser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document