scholarly journals Análise do papel da via miR156/SQUAMOSA Promoter-Binding Protein-Like (SPL) na organogênese in vitro a partir de raízes de Arabidopsis thaliana

Author(s):  
Gabriel Henrique Braga Rocha
2006 ◽  
Vol 33 (9) ◽  
pp. 847 ◽  
Author(s):  
Adamantia Agalou ◽  
Herman P. Spaink ◽  
Andreas Roussis

The metabolic role and regulation of selenium, particularly in plants, is poorly understood. One of the proteins probably involved in the metabolic regulation of this element is the selenium-binding protein (SBP) with homologues present across prokaryotic and eukaryotic species. The high degree of conservation of SBP in different organisms suggests that this protein may play a role in fundamental biological processes. In order to gain insight into the biochemical function of SBP in plants we used the yeast two-hybrid system to identify proteins that potentially interact with an Arabidopsis thaliana (L.) Heynh. homologue. Among the putative binding partners of SBP, a NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a fructose-bisphosphate aldolase (FBA) were found as reliable positive candidates. The interaction of these proteins with SBP was confirmed by in vitro binding assays. Previous findings in Escherichia coli, demonstrated the direct binding of selenium to both GAPDH and aldolase. Therefore our results reveal the interaction, at least in pairs, of three proteins that are possibly linked to selenium and suggest the existence of a protein network consisting of at least SBP, GAPDH and FBA, triggered by or regulating selenium metabolism in plant cells.


Author(s):  
Kenichi Matsuda ◽  
Kei Fujita ◽  
Toshiyuki Wakimoto

Abstract Penicillin binding protein-type thioesterases (PBP-type TEs) are a recently identified group of peptide cyclases that catalyze head-to-tail macrolactamization of non-ribosomal peptides. PenA, a new member of this group, is involved in the biosyntheses of cyclic pentapeptides. In this study, we demonstrated the enzymatic activity of PenA in vitro, and analyzed its substrate scope with a series of synthetic substrates. A comparison of the reaction profiles between PenA and SurE, a representative PBP-type TE, showed that PenA is more specialized for small peptide cyclization. A computational model provided a possible structural rationale for the altered specificity for substrate chain lengths.


Sign in / Sign up

Export Citation Format

Share Document