Abstract 491: Injury-Activated TGFβ Recruits MSCs for Vascular Remodeling

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Mei Wan ◽  
Changjun Li ◽  
Gehua Zhen ◽  
Wenying He ◽  
Kai Jiao ◽  
...  

Stem/progenitor cells can be recruited to participate in tissue remodeling, regeneration, or repair following injury. In particular, bone marrow-derived or local resident stem /progenitor cells are implicated in vascular repair and remodeling. It is believed that migratory factor(s) released by injured tissue creates a gradient to mediate the migration of stem cells to the injury sites. The key mediator(s) inducing the recruitment of the cells to the vascular lesions remains to be defined. Here we show that nestin + cells, which represent similar population as Sca1 + CD29 + CD11b - CD45 - mesenchymal/stromal stem cells (MSCs), were recruited and incorporated into the neointimal tissue in both rat model of balloon injury of carotid artery and mouse model of wire injury of femoral artery. Importantly, elevated active TGFβ1 level was observed in the injured vessels as early as 8 hr post injury, and the elevation lasted for 2 wks. To investigate whether injury-induced activation of TGFβ1 in vascular matrix stimulates migration of MSCs, we developed an aorta-conditioned medium (Aorta-CM)-based cell migration assay in which MSCs were placed in the upper chamber and the Aorta-CM prepared by culturing ex vivo injured aorta was placed in the lower chamber of a transwell chamber. Aorta-CM prepared from ex vivo injured aorta significantly enhanced cell migration compare to CM prepared from uninjured aorta. When neutralizing antibody specific for TGFβ1 or the inhibitor of TGFβ type I receptor (TβRI) was added to the CM, the migration of MSCs was almost abolished, indicating that active TGFβ1 released by the injured arteries mediates MSCs migration. To examine the role of TGFβ in MSCs recruitment following vascular injury in vivo , TβRI inhibitor was injected into mice with injury of femoral arteries. Both the development of neointima and the recruitment of nestin + cells were blocked with the inhibitor treatment compare to those with vehicle treatment. Collectively, the results suggest that TGFβ is an injury-activated messenger essential for the recruitment of MSCs to participate in vascular remodeling.

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Yan Zhang ◽  
Marc Lamoureux ◽  
Stephanie Thorn ◽  
Vincent Chan ◽  
Joel Price ◽  
...  

Background: To investigate the mechanisms involved in the potentiation of cell therapy by delivery matrices, we evaluated the retention and engraftment of transplanted human circulating progenitor cells (CPCs) injected in a collagen matrix by using in vivo positron emission tomography (PET) imaging, ex vivo biodistribution, and immunohistochemistry. Methods: CPCs were labeled with 18 F-FDG and injected with or without a collagen type I-based matrix in the ischemic hindlimb muscle (IM) of rats (2x10 6 cells; n=15/group). Localization of cells was acquired by PET imaging (15 min) at 150 min post-injection. In addition, radionuclide biodistribution, immunofluorescence, and immunohistochemical examination of transplanted CPCs were performed at up to 14 days. Results: Cell labeling efficiency was CPC-concentration dependent (r=0.61, p <0.001), but not 18 F-FDG-dose dependent. Labeled CPCs exhibited excellent short-term stability and viability. Persistence of 18 F-FDG radioactivity in cells was markedly greater than non-specific retention in the matrix. Wholebody (WB) PET images revealed better CPC retention in the IM and less non-specific leakage to other tissues when CPCs were delivered within the matrix (IM/WB retention ratio of 43.9±8.2%), compared to cells injected alone (22.3±10.4%; p =0.040) and to 18 F-FDG injected with or without the matrix (9.7±5.5% and 11.0±5.5%, respectively; p <0.005). Radioactivity biodistribution confirmed that accumulation was increased (by 92.5%; p =0.024) in the IM and reduced (by 1.1 to 23.8%; p <0.05) in non-specific tissues when cells were injected within the matrix, compared to cells injected alone. Anti-human mitochondria staining showed increased cell retention in the IM with use of matrices (3.0±2.1%) versus cells only (1.9±0.8%; p =0.048). At 14 days the number of CD31 + transplanted human cells was greater (1.6±0.1%) when injected within the matrix than injected alone (0.7±0.1%; p =0.004). Conclusions: Collagen-based delivery matrices improve the early retention of transplanted CPCs, which in turn favors subsequent cell engraftment in the ischemic tissue. This mechanism conferred by the matrix has potential implications for the optimization of cell therapy at the early stages after cell delivery.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4882-4882
Author(s):  
Alison Domingues ◽  
Kamila Bujko ◽  
Magdalena Kucia ◽  
Janina Ratajczak ◽  
Mariusz Z Ratajczak

Background . There is an ongoing search for multipotent stem cells from umbilical cord blood (UCB) with trans-germ layer differentiation potential that can be employed in repairing damaged organs and also expanded into transplantable hematopoietic stem cells (HSCs) and endothelial progenitor cells (EPCs). The existence of such cells in postnatal life could also revive the concept of hemangioblasts or hemangioblast-like cells in adult hematopoietic organs. Our group was the first to isolate a population of small CD34+CD133+lin-CD45- early-development stem cells from human hematopoietic tissues, including UCB. Based on the validated expression of early-development markers, these cells were named "very small embryonic-like stem cells" (VSELs, Circulation Res 2019; 124:208-210). Currently, more than 25 independent groups worldwide who have carefully followed the multicolor-staining cell-sorting strategy described by us (Current Protocols in Cytometry 2010, 9.29.1-9.29.15) have successfully isolated these cells and demonstrated their in vivo contribution to all three germ layer lineages. Thus, VSELs could be very useful in regenerative medicine in the field of angiogenesis, and UCB is an attractive source, with easy accessibility and tolerance to allogenic grafts. However, the low number of these cells in UCB and their quiescence are limiting factors. Therefore, in vitro differentiation of VSELs into endothelial progenitor cells (EPCs) would allow improvement in the ability to expand endothelial cells and could represent a clinically relevant alternative to embryonic stem cells (ESCs) and induced pluripotent stem cells (iPS) for cell therapy without ethical problems and undesirable side effects. Hypothesis. We hypothesized that UCB-purified, very small, early-developmentCD34+lin-CD45-stem cells can be ex vivo expanded into functional EPCs. Materials and Methods. VSELs highly purified by FACS were expanded into EPCs in pro-angiogenic medium supplemented with mesodermic differentiation factors and then endothelial differentiation factors in the presence of nicotinamide and UM171. In parallel, we expanded EPCs from MNCs isolated from the same UCB units by employing a classical protocol (Methods in Enzymology 2008, 445:303-29). The EPC nature of the expanded VSEL-derived cells was confirmed by the expression of typical EPC markers as well as by in vitro angiogenic assays. Results. Our differentiation cocktail allowed us to differentiate and expand VSELs into EPCs. In our expansion medium (Figure 1), the very small, round VSELs smaller than 6 mm in diameter proliferated and differentaited over time into larger and extended cells with a cobblestone morphology similar to the EPC control cells, and we confirmed their endothelial characteristics by cytometry analysis. Like EPCs, VSEL-derived EPCs were positive for CD31, CD144, KDR, and CD105 and negative for mesenchymal surface markers, such as CD90. They also performed similarly to EPCs in classical vasculogenic tests, including adhesion, proliferation, migration, and tubulogenesis assays. Conclusions. This work shows, for the first time, efficient VSEL differentiation into functional endothelial cells with vasculogenic properties without the help of co-culture over feeder-layers or viral vectors in medium supplemented with nicotinamide and UM171. These findings allow us to propose these cells as an interesting cell therapy product. These results also reopen the question of the existence of hemangioblast-like cells in postnatal tissues. We are currently testing these cells in vivo in model of hind limb ischemia. Figure 1 Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ryo Seishima ◽  
Carly Leung ◽  
Swathi Yada ◽  
Katzrin Bte Ahmed Murad ◽  
Liang Thing Tan ◽  
...  

AbstractWnt signaling is critical for directing epithelial gland development within the uterine lining to ensure successful gestation in adults. Wnt-dependent, Lgr5-expressing stem/progenitor cells are essential for the development of glandular epithelia in the intestine and stomach, but their existence in the developing reproductive tract has not been investigated. Here, we employ Lgr5-2A-EGFP/CreERT2/DTR mouse models to identify Lgr5-expressing cells in the developing uterus and to evaluate their stem cell identity and function. Lgr5 is broadly expressed in the uterine epithelium during embryogenesis, but becomes largely restricted to the tips of developing glands after birth. In-vivo lineage tracing/ablation/organoid culture assays identify these gland-resident Lgr5high cells as Wnt-dependent stem cells responsible for uterine gland development. Adjacent Lgr5neg epithelial cells within the neonatal glands function as essential niche components to support the function of Lgr5high stem cells ex-vivo. These findings constitute a major advance in our understanding of uterine development and lay the foundations for investigating potential contributions of Lgr5+ stem/progenitor cells to uterine disorders.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yiqun Su ◽  
Jie Wen ◽  
Junrong Zhu ◽  
Zhiwei Xie ◽  
Chang Liu ◽  
...  

Abstract Background Billions of dollars are invested annually by pharmaceutical companies in search of new options for treating hair loss conditions; nevertheless, the challenge remains. One major limitation to hair follicle research is the lack of effective and efficient drug screening systems using human cells. Organoids, three-dimensional in vitro structures derived from stem cells, provide new opportunities for studying organ development, tissue regeneration, and disease pathogenesis. The present study focuses on the formation of human hair follicle organoids. Methods Scalp-derived dermal progenitor cells mixed with foreskin-derived epidermal stem cells at a 2:1 ratio aggregated in suspension to form hair follicle-like organoids, which were confirmed by immunostaining of hair follicle markers and by molecular dye labeling assays to analyze dermal and epidermal cell organization in those organoids. The hair-forming potential of organoids was examined using an in vivo transplantation assay. Results Pre-aggregation of dermal and epidermal cells enhanced hair follicle formation in vivo. In vitro pre-aggregation initiated the interactions of epidermal and dermal progenitor cells resulting in activation of the WNT pathway and the formation of pear-shape structures, named type I aggregates. Cell-tracing analysis showed that the dermal and epidermal cells self-assembled into distinct epidermal and dermal compartments. Histologically, the type I aggregates expressed early hair follicle markers, suggesting the hair peg-like phase of hair follicle morphogenesis. The addition of recombinant WNT3a protein to the medium enhanced the formation of these aggregates, and the Wnt effect could be blocked by the WNT inhibitor, IWP2. Conclusions In summary, our system supports the rapid formation of a large number of hair follicle organoids (type I aggregates). This system provides a platform for studying epithelial-mesenchymal interactions, for assessing inductive hair stem cells and for screening compounds that support hair follicle regeneration.


Blood ◽  
2011 ◽  
Vol 118 (12) ◽  
pp. 3236-3243 ◽  
Author(s):  
HoangDinh Huynh ◽  
Junke Zheng ◽  
Masato Umikawa ◽  
Chaozheng Zhang ◽  
Robert Silvany ◽  
...  

Abstract The role of IGF binding protein 2 (IGFBP2) in cell growth is intriguing and largely undefined. Previously we identified IGFBP2 as an extrinsic factor that supports ex vivo expansion of hematopoietic stem cells (HSCs). Here we showed that IGFBP2-null mice have fewer HSCs than wild-type mice. While IGFBP2 has little cell-autonomous effect on HSC function, we found decreased in vivo repopulation of HSCs in primary and secondary transplanted IGFBP2-null recipients. Importantly, bone marrow stromal cells that are deficient for IGFBP2 have significantly decreased ability to support the expansion of repopulating HSCs. To investigate the mechanism by which IGFBP2 supports HSC activity, we demonstrated that HSCs in IGFBP2-null mice had decreased survival and cycling, down-regulated expression of antiapoptotic factor Bcl-2, and up-regulated expression of cell cycle inhibitors p21, p16, p19, p57, and PTEN. Moreover, we found that the C-terminus, but not the RGD domain, of extrinsic IGFBP2 was essential for support of HSC activity. Defective signaling of the IGF type I receptor did not rescue the decreased repopulation of HSCs in IGFBP2-null recipients, suggesting that the environmental effect of IGFBP2 on HSCs is independent of IGF-IR mediated signaling. Therefore, as an environmental factor, IGFBP2 supports the survival and cycling of HSCs.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 448-448
Author(s):  
Ling Li ◽  
Lisheng Wang ◽  
Liang Li ◽  
Tinisha McDonald ◽  
Yin Wei Ho ◽  
...  

Abstract Abstract 448 BCR-ABL tyrosine kinase inhibitors (TKI) are effective in inducing remissions and prolonging survival of CML patients, but fail to eradicate primitive leukemia stem cells (LSC) which remain a potential source of relapse. New strategies to enhance elimination of residual CML LSC in TKI-treated patients are required. We have previously reported that the stress-related deacetylase SIRT1 is expressed at high levels in CML stem/progenitor cells and that inhibition of SIRT1 expression using lentivirus-expressed shRNA induces apoptosis in CML progenitors and increases their sensitivity to imatinib (IM) by activating p53 signaling (Blood 2010, 116: 200A). These results support an important role for SIRT1 in CML LSC maintenance and TKI resistance, and as a potential molecular target for therapy directed against CML LSC. Tenovin-6 (TV) has been identified as a potent small molecule inhibitor of SIRT1 activity (Cancer Cell 2008, 13:454). Here we evaluated whether pharmacological inhibition of SIRT1 activity using TV could selectively inhibit CML stem/progenitor cells. As with shRNA-mediated knock-down of SIRT1, treatment with TV (0.5 μM) significantly increased apoptosis of CML CD34+ cells (TV16±7% vs. Control 3±2%, p=0.04, n=3), but not normal CD34+ cells (TV 6±2% vs. Control 4±2%, p=0.1, n=3). The combination of IM (2.5 μM) and TV induced significantly increased apoptosis in CML progenitors compared to IM alone, and to a significantly greater extent than in normal cells (CML, TV + IM 40±2% vs. IM 19±3%, p=0.009, n=3; CB, TV + IM 15±4% vs. IM 10±2%, p=0.04, n=3). TV (1 μM) increased apoptosis in both CML CD34+CD38− (TV 42±10% vs. Control 4±3%, p=0.04, n=3) and CD34+CD38+ cells (TV 35±7% vs. Control 8±2%, p=0.03, n=3). CFSE labeling indicated that treatment with TV resulted in increased apoptosis of undivided CML CD34+CD38− cells identified on the basis of high CFSE fluorescence (TV 20±7% vs. Control 2±1%, p=0.04, n=3). The combination of TV with IM resulted in a significant increase in apoptosis in CML CD34+CD38− CFSEhigh cells compared to IM alone (TV plus IM 35±5% vs. IM 10±4%, p=0.03, n=3). Treatment with TV (0.5 μM) reduced CML CFC frequency (70±9% inhibition with TV compared to untreated controls, p=0.009, n=3) without affecting normal CFC frequency. Combination of TV (0.5 μM) with IM resulted in enhanced inhibition of CML CFC compared to IM alone, but did not enhance inhibition of normal CFC (CML: TV plus IM 82±6% inhibition vs. IM 57±10%, p=0.02, n=3; CB: TV plus IM 38±7% inhibition vs. IM 36±9%, p=0.1, n=3). TV treatment effectively inhibited the growth of Baf3 cells expressing T315I-mutated BCR-ABL, and significantly enhanced apoptosis of IM-resistant CML blast crisis CD34+ cells [TV (1 μm) 30±1% vs. Control 19±5%, p=0.04, n=3], suggesting SIRT1 inhibition can also target TKI-resistant CML cells. Ex vivo treatment with TV (1 μM) significantly reduced longer-term (12 weeks) engraftment of CML CD34+ cells in NSG mice following TV treatment (TV treated 0.2*105±0.1*105 human CD45+ cells in murine BM vs. Control 1.8*105±0.6*105, p=0.009, n=5). Significant reduction in engraftment of CD33+ (p=0.008) and CD14+ myeloid cells (p=0.009) was seen. Q-PCR and FISH analysis confirmed that engrafted human cells were leukemic in origin. Interestingly, engraftment of CB CD34+ cells was not reduced after treatment with TV (TV 2.7*106±0.7*106 human CD45+ cells in murine BM, vs. Control 2.4*106±0.8*106, p=0.2, n=6). These results show that SIRT1 inhibition by TV effectively targets primitive human CML cells with in vivo multi-lineage engraftment capacity. Treatment with TV significantly enhanced acetylated p53 levels in CML CD34+ cells, indicating effective inhibition of SIRT1 activity. TV treatment also increased total p53 levels, possibly related to reduced p53 degradation. TV treatment did not increase acetylated p53 or total p53 levels in normal CD34+ cells. Importantly shRNA-mediated knock-down of p53 resulted in significant reduction of TV-induced apoptosis in CML CD34+ cells (13±6% apoptosis with p53 shRNA; 33±7% apoptosis with control shRNA, p=0.04, n=3), indicating that the effects of TV on CML CD34+ cells are related to p53 acetylation and activation. In conclusion, our studies indicate that pharmacological inhibition of SIRT1 can activate p53 and enhance eradication of CML LSC in combination with TKI treatment, and support further evaluation of targeted inhibition of SIRT1 as a therapeutic strategy in CML. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 76 (3) ◽  
pp. 1496-1504 ◽  
Author(s):  
Ulrich Kuhn ◽  
Atsushi Terunuma ◽  
Wolfgang Pfutzner ◽  
Ruth Ann Foster ◽  
Jonathan C. Vogel

ABSTRACT For skin gene therapy, introduction of a desired gene into keratinocyte progenitor or stem cells could overcome the problem of achieving persistent gene expression in a significant percentage of keratinocytes. Although keratinocyte stem cells have not yet been completely characterized and purified for gene targeting purposes, lentiviral vectors may be superior to retroviral vectors at gene introduction into these stem cells, which are believed to divide and cycle slowly. Our initial in vitro studies demonstrate that lentiviral vectors are able to efficiently transduce nondividing keratinocytes, unlike retroviral vectors, and do not require the lentiviral accessory genes for keratinocyte transduction. When lentiviral vectors expressing green fluorescent protein (GFP) were directly injected into the dermis of human skin grafted onto immunocompromised mice, transduction of dividing basal and nondividing suprabasal keratinocytes could be demonstrated, which was not the case when control retroviral vectors were used. However, flow cytometry analysis demonstrated low transduction efficiency, and histological analysis at later time points provided no evidence for progenitor cell targeting. In an alternative in vivo method, human keratinocytes were transduced in tissue culture (ex vivo) with either lentiviral or retroviral vectors and grafted as skin equivalents onto immunocompromised mice. GFP expression was analyzed in these human skin grafts after several cycles of epidermal turnover, and both the lentiviral and retroviral vector-transduced grafts had similar percentages of GFP-expressing keratinocytes. This ex vivo grafting study provides a good in vivo assessment of gene introduction into progenitor cells and suggests that lentiviral vectors are not necessarily superior to retroviral vectors at introducing genes into keratinocyte progenitor cells during in vitro culture.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Georgina Navoly ◽  
Conor J. McCann

AbstractEnteric neural stem cells (ENSC) have been identified as a possible treatment for enteric neuropathies. After in vivo transplantation, ENSC and their derivatives have been shown to engraft within colonic tissue, migrate and populate endogenous ganglia, and functionally integrate with the enteric nervous system. However, the mechanisms underlying the integration of donor ENSC, in recipient tissues, remain unclear. Therefore, we aimed to examine ENSC integration using an adapted ex vivo organotypic culture system. Donor ENSC were obtained from Wnt1cre/+;R26RYFP/YFP mice allowing specific labelling, selection and fate-mapping of cells. YFP+ neurospheres were transplanted to C57BL6/J (6–8-week-old) colonic tissue and maintained in organotypic culture for up to 21 days. We analysed and quantified donor cell integration within recipient tissues at 7, 14 and 21 days, along with assessing the structural and molecular consequences of ENSC integration. We found that organotypically cultured tissues were well preserved up to 21-days in ex vivo culture, which allowed for assessment of donor cell integration after transplantation. Donor ENSC-derived cells integrated across the colonic wall in a dynamic fashion, across a three-week period. Following transplantation, donor cells displayed two integrative patterns; longitudinal migration and medial invasion which allowed donor cells to populate colonic tissue. Moreover, significant remodelling of the intestinal ECM and musculature occurred upon transplantation, to facilitate donor cell integration within endogenous enteric ganglia. These results provide critical evidence on the timescale and mechanisms, which regulate donor ENSC integration, within recipient gut tissue, which are important considerations in the future clinical translation of stem cell therapies for enteric disease.


2020 ◽  
Author(s):  
Katharina Keuenhof ◽  
Patrick Heimel ◽  
L.M. Zopf ◽  
Martin Raigel ◽  
Anna Turyanskaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document