Abstract 614: 1,25-dihydroxyvitamin D Enhances Vegf-stimulated Porcine Adipose-derived Mesenchymal Stem Cells Toward the Endothelial Phenotype Involving Wnt/β-catenin Pathway

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Yovani Llamas ◽  
Sami Almalki ◽  
Devendra K Agrawal

Background: Cell-based therapy using adipose-derived mesenchymal stem cells (AMSCs) is an attractive option for re-endothelialization post-angioplasty procedures. Vitamin D levels in circulating blood may regulate AMSC-based re-endothelialization of injured arteries. To our knowledge, the role of vitamin D and vascular endothelial growth factor (VEGF) in the differentiation of adipose-derived AMSCs into endothelial cells (ECs) has not been examined. In this study, we investigated the effect of vitamin D on VEGF-induced differentiation of MSCs into ECs. Methods and Results: MSCs isolated from porcine adipose tissue were CD11b-CD34-CD44+CD73+CD90+ and showed characteristics of MSCs. The MSCs were stimulated and differentiated into ECs with endothelial growth media (EGM+50ng/ml of VEGF) and EGM media containing 10nM of calcitriol (EGM+50ng/ml of VEGF +10nM calcitriol) for 10 days. The EC differentiation was assessed by mRNA expression by qPCR and protein expression by flow cytometry for endothelial cell markers. Calcitriol enhanced EGM+VEGF-induced differentiation of MSCs into ECs, as revealed by 2-fold increase in mRNA and 4-fold increase in protein expression of EC markers. Angiogenesis assay and acetylated low density lipoprotein (LDL) uptake assay were used to assess the endothelial functionality that showed significant increase in capillary tube sprouting, and an increase in LDL uptake by the differentiated cells in response to EGM +VEGF+ calcitriol. Examination of the findings from Wnt Pathway array revealed a 3-fold decrease in β-catenin and 3-fold increase in KREMEN1 protein in the cells treated with EGM + VEGF+calcitriol. Conclusion: Vitamin D significantly enhanced VEGF-induced differentiation of MSCs into endothelial cells. Thus, vitamin D status of the patients undergoing coronary intervention might regulate the development of thrombosis and intimal hyperplasia.

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Sami G Almalki ◽  
Velidi Rao ◽  
Divya Pankajakshan ◽  
Devendra K Agrawal

Rationale Adipose-derived mesenchymal stem cells (ADMSCs) are multipotent cells that have the potential to differentiate into different cell linages, and represent promising tools in various clinical applications. However, the molecular mechanisms that control the ability of ADMSCs to remodel 3-dimensional extracellular matrix (ECM) barriers during differentiation are not clearly understood. Herein, we studied the expression of matrix metalloproteinases (MMPs) during the differentiation of ADMSCs to endothelial cells (ECs) in vitro . Methods MSCs were isolated from porcine abdominal adipose tissue, and characterized by positive staining for MSC markers, CD44, CD73, CD90, and negative staining for CD11b, CD34 and CD45. The plasticity of MSCs was detected by bi-lineage differentiation to osteocytes, and adipocytes. The mRNA transcripts for different MMPs and TIMPs and protein expression of EC markers were analyzed by RT-PCR and immunostaining. The enzyme activity and protein expression were also analyzed by gelatin zymography, ELISA, and Western blot. Results The differentiation of ADMSCs to ECs was confirmed by the positive staining and mRNA expression of the endothelial markers. The mRNA transcripts for MMP-2 and membrane type 1 MMP (MT1-MMP) was significantly increased by 2.5 and 2.0 fold, respectively, during the differentiation of MSCs into ECs. Western blot and ELISA showed an elevated MT1-MMP and MMP-2 expression. The enzyme activity of MMP-2 was also observed by gelatin zymography. Conclusion We demonstrated that porcine ADMSCs have the ability to differentiate into ECs, and this process involves the up-regulation of MMP-2 and MT1-MMP. The increase in the expression of MMP-2 and MT1-MMP may, at least partially, facilitate the change in morphology of MSCs by degrading the ECM barriers. These findings may provide a potential mechanism for the role of MMP2 and MT1-MMP in the differentiation of ADMSCs into ECs.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Izuagie Attairu Ikhapoh ◽  
Christopher J. Pelham ◽  
Devendra K. Agrawal

Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs) differentiate into endothelial cells (ECs) in the presence of VEGF-Ain vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II) on EC differentiation and function. MSCs (CD44+, CD73+, CD90+, CD14−, and CD45−) were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL) demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin), VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFαcaused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFαwas sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFαinhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention.


2021 ◽  
Vol 21 ◽  
Author(s):  
Xuping Niu ◽  
Qixin Han ◽  
Xiaofang Li ◽  
Juan Li ◽  
Yanmin Liu ◽  
...  

Objective: Psoriasis is a chronic inflammatory skin disease highly depending on angiogenesis. Our prior results showed that the mRNA and protein of Del-1 in dermal mesenchymal stem cells (dMSCs) was up-regulated from psoriasis. Our aim was further to investigate the role of Del-1 from dMSCs in the pathogenesis of psoriasis and confirm the effect of Del-1 on the pathogenesis of psoriasis. Methods: We conducted an immunohistochemistry experiment to further investigate the expression of Del-1in psoriatic lesions. In addition, dMSCs with over-expressed Del-1 via the lentiviral vector of Del-1 were co-cultured with ECs, and the protein expression of integrins (αvβ3, αvβ5 ,and α5β1) of ECs were detected by western blotting. Results: This research showed that Del-1 was significantly increased in lesions of patients with psoriasis (p< .05, 9.96 vs. 2.18), and Del-1 from dMSCs successfully induced up-regulation of integrins α5β1 and αvβ3 (all p < .05). Conclusion: This study demonstrated that Del-1 from dMSCs was involved in the pathogenesis of psoriasis through induced angiogenesis. And Del-1, αvβ3 and α5β1 may be potential new targets for inhibiting angiogenesis in psoriasis.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Chao Hung Wang ◽  
Wen-Jin Cherng ◽  
I-Chang Hsieh ◽  
Ning-I Yang ◽  
Chi-Hsiao Yeh

Objectives: Mesenchymal stem cells (MSCs) from the bone marrow (BM) are pluripotent and have the capacity to differentiate into cardiomyocytes, endothelial cells (ECs), and smooth muscle cells (SMCs). Currently, MSCs are one of a number of cell types undergoing extensive investigation for cardiac regeneration therapy. However, it has not yet been determined whether this cell therapy also substantially contributes to vascular remodeling of diseased vessels, such as in intimal hyperplasia. Methods and Results: Human MSCs and a variety of progenitor and vascular cells were used for in vitro and in vivo adhesion experiments. To test the contribution of MSCs to intimal hyperplasia, MSCs from eGFP mice were injected via the tail vein of wild-type littermates after femoral artery wire injury. A model of direct BM transplantation of eGFP MSCs into the tibias of irradiated wild-type littermates was also conducted. Wire-induced vascular injury mobilized MSCs into the circulation. Compared to human aortic SMCs, MSCs exhibited a 2.8-fold increase in the adhesion capacity in vitro ( p < 0.001), and a 6.3-fold increase in vivo ( p < 0.001). In all animal models, immunostaining showed that a significant amount of eGFP MSCs contributed to intimal hyperplasia after vascular injury. Furthermore, MSCs were able to differentiate into cells of endothelial or smooth muscle lineage on the injured vessel wall. Co-culture experiments demonstrated that late-outgrowth ECs guided MSCs to differentiate towards an endothelial lineage through a paracrine effects rather than direct cell-cell interactions. In vivo , cell therapy with late-outgrowth ECs significantly attenuated the thickness of the neointima contributed by MSCs (intima/media ratio, from 3.2 ± 0.4 to 0.4 ± 0.1, p < 0.001). Conclusions: This study raises concerns about the detrimental effects of stem cell therapy on injured vessel remodeling. Tissue regeneration therapy with MSCs or cell populations containing MSCs requires a strategy to attenuate the high potential of MSCs to develop intimal hyperplasia on diseased vessels.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 909-909
Author(s):  
Nick R Anderson ◽  
Hui Li ◽  
Mason W Harris ◽  
Shaowei Qiu ◽  
Andrew J Paterson ◽  
...  

The Flt3-ITD is one of the most common mutations in AML, and defines a distinct subtype of disease with unique features and biology, and with poor prognosis related to high rates of recurrence. Although several FLT3 TKIs have been developed for clinical use, responses are limited and are not sustained. The objective of our study was to determine the contribution of bone marrow stromal populations to LSC drug resistance to Flt3-targeted TKI in Flt3-ITD AML. We utilized a newly generated Flt3-ITD TET2flox/flox Mx1-cre mouse model of AML to identify phenotypic populations with leukemia initiating capacity (LIC) in Flt3-ITD AML. Administration of pIpC leads to deletion of TET2 and development of AML-like disease characterized by leukocytosis, accumulation of blasts, anemia and thrombocytopenia. Transplantation of selected STHSC, MPP and GMP populations revealed that LIC were almost exclusively found within the phenotypic ST-HSC population (calculated stem cell frequencies: &lt;1:180,000, 1:63,635, and 1:2,730 for GMP, MPP, and ST-HSC, respectively). We similarly found that in samples from human Flt3-ITD AML patients LIC capacity was similarly restricted to more primitive HSPC populations (Lin-CD34+CD38-) and was not seen in committed GMP (Lin-CD34+CD38+CD123+CD45RA+). We performed flow cytometry on collagenase-digested bone fragments from AML mice to characterize bone marrow stromal cells in Flt3-ITD AML mice. We also transplanted murine AML cells into CXCL12-GFP mice to assess alterations in CXCL12-expressing stromal populations in AML bone marrow. We found that several stromal populations are expanded in AML vs. WT mice, including a 3.5-fold increase in mesenchymal stem cells (CD45-Ter119-CD31-VECadherin-Sca1+CD51+), a 3.9-fold increase in endothelial cells (CD45-Ter119-CD31+), and a 1.5-fold increase in osteoprogenitors (CD45-Ter119-CD31-VECadherin-Sca1-CD51+). The expression of CXCL12, a key factor that mediates niche localization of HSC and LSC, was greater than 2-fold higher in osteoprogenitors, but not significantly different in endothelial cells, and 2-fold lower in mesenchymal stem cells in AML vs. WT mice. We also showed that Flt3-ITD AML HSPCs have nearly 2-fold higher CXCR4 expression than WT HSPCs. These data taken together supported further exploration of the role of a CXCL12-expressing osteoprogenitor niche in supporting Flt3-ITD AML LSC. We transplanted murine AML cells into CXCL12flox/flox UBC-cre or CXCL12flox/flox Osx-cre mice to assess the effect of global or osteoprogenitor-specific CXCL12-KO, respectively, on AML progression and TKI response. We found that this model of AML was resistant to single agent Flt3 TKI (AC220) treatment. Global CXCL12-KO using CXCL12flox/flox UBC-cre mice modestly improved response to TKI. We show that a combination regimen including standard-of-care "7+3" chemotherapy (cytarabine + doxorubicin) and a Flt3 TKI (AC220) results in more effective and selective targeting of leukemia cells in this model. We are currently treating osteoprogenitor-specific CXCL12-KO AML mice with the combination chemotherapy + TKI regimen to investigate the contribution of osteoprogenitors to disease progression and drug resistance in Flt3-ITD AML LSC. In conclusion, our results suggest that LSC in Flt3-ITD AML are present within a primitive phenotypic ST-HSC population more so than in MPP and GMP populations as often seen in some other types of AML. Our studies support a potential role for a CXCL12-expressing osteoprogenitor niche in supporting Flt3-ITD AML LSC growth and drug resistance, targeting of which could improve responses and outcomes in Flt3-ITD AML. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 14 (4) ◽  
pp. 327-336 ◽  
Author(s):  
Carl R. Harrell ◽  
Marina Gazdic ◽  
Crissy Fellabaum ◽  
Nemanja Jovicic ◽  
Valentin Djonov ◽  
...  

Background: Amniotic Fluid Derived Mesenchymal Stem Cells (AF-MSCs) are adult, fibroblast- like, self-renewable, multipotent stem cells. During the last decade, the therapeutic potential of AF-MSCs, based on their huge differentiation capacity and immunomodulatory characteristics, has been extensively explored in animal models of degenerative and inflammatory diseases. Objective: In order to describe molecular mechanisms responsible for the therapeutic effects of AFMSCs, we summarized current knowledge about phenotype, differentiation potential and immunosuppressive properties of AF-MSCs. Methods: An extensive literature review was carried out in March 2018 across several databases (MEDLINE, EMBASE, Google Scholar), from 1990 to present. Keywords used in the selection were: “amniotic fluid derived mesenchymal stem cells”, “cell-therapy”, “degenerative diseases”, “inflammatory diseases”, “regeneration”, “immunosuppression”. Studies that emphasized molecular and cellular mechanisms responsible for AF-MSC-based therapy were analyzed in this review. Results: AF-MSCs have huge differentiation and immunosuppressive potential. AF-MSCs are capable of generating cells of mesodermal origin (chondrocytes, osteocytes and adipocytes), neural cells, hepatocytes, alveolar epithelial cells, insulin-producing cells, cardiomyocytes and germ cells. AF-MSCs, in juxtacrine or paracrine manner, regulate proliferation, activation and effector function of immune cells. Due to their huge differentiation capacity and immunosuppressive characteristic, transplantation of AFMSCs showed beneficent effects in animal models of degenerative and inflammatory diseases of nervous, respiratory, urogenital, cardiovascular and gastrointestinal system. Conclusion: Considering the fact that amniotic fluid is obtained through routine prenatal diagnosis, with minimal invasive procedure and without ethical concerns, AF-MSCs represents a valuable source for cell-based therapy of organ-specific or systemic degenerative and inflammatory diseases.


Author(s):  
Francesca Pagani ◽  
Elisa Tratta ◽  
Patrizia Dell’Era ◽  
Manuela Cominelli ◽  
Pietro Luigi Poliani

AbstractEarly B-cell factor-1 (EBF1) is a transcription factor with an important role in cell lineage specification and commitment during the early stage of cell maturation. Originally described during B-cell maturation, EBF1 was subsequently identified as a crucial molecule for proper cell fate commitment of mesenchymal stem cells into adipocytes, osteoblasts and muscle cells. In vessels, EBF1 expression and function have never been documented. Our data indicate that EBF1 is highly expressed in peri-endothelial cells in both tumor vessels and in physiological conditions. Immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and fluorescence-activated cell sorting (FACS) analysis suggest that EBF1-expressing peri-endothelial cells represent bona fide pericytes and selectively express well-recognized markers employed in the identification of the pericyte phenotype (SMA, PDGFRβ, CD146, NG2). This observation was also confirmed in vitro in human placenta-derived pericytes and in human brain vascular pericytes (HBVP). Of note, in accord with the key role of EBF1 in the cell lineage commitment of mesenchymal stem cells, EBF1-silenced HBVP cells showed a significant reduction in PDGFRβ and CD146, but not CD90, a marker mostly associated with a prominent mesenchymal phenotype. Moreover, the expression levels of VEGF, angiopoietin-1, NG2 and TGF-β, cytokines produced by pericytes during angiogenesis and linked to their differentiation and activation, were also significantly reduced. Overall, the data suggest a functional role of EBF1 in the cell fate commitment toward the pericyte phenotype.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei-Cheng Tseng ◽  
Pei-Ying Lee ◽  
Ming-Tsun Tsai ◽  
Fu-Pang Chang ◽  
Nien-Jung Chen ◽  
...  

Abstract Background Acute kidney injury (AKI) is an emerging global healthcare issue without effective therapy yet. Autophagy recycles damaged organelles and helps maintain tissue homeostasis in acute renal ischemia-reperfusion (I/R) injury. Hypoxic mesenchymal stem cells (HMSCs) represent an innovative cell-based therapy in AKI. Moreover, the conditioned medium of HMSCs (HMSC-CM) rich in beneficial trophic factors may serve as a cell-free alternative therapy. Nonetheless, whether HMSCs or HMSC-CM mitigate renal I/R injury via modulating tubular autophagy remains unclear. Methods Renal I/R injury was induced by clamping of the left renal artery with right nephrectomy in male Sprague-Dawley rats. The rats were injected with either PBS, HMSCs, or HMSC-CM immediately after the surgery and sacrificed 48 h later. Renal tubular NRK-52E cells subjected to hypoxia-reoxygenation (H/R) injury were co-cultured with HMSCs or treated with HMSC-CM to assess the regulatory effects of HSMCs on tubular autophagy and apoptosis. The association of tubular autophagy gene expression and renal recovery was also investigated in patients with ischemic AKI. Result HMSCs had a superior anti-oxidative effect in I/R-injured rat kidneys as compared to normoxia-cultured mesenchymal stem cells. HMSCs further attenuated renal macrophage infiltration and inflammation, reduced tubular apoptosis, enhanced tubular proliferation, and improved kidney function decline in rats with renal I/R injury. Moreover, HMSCs suppressed superoxide formation, reduced DNA damage and lipid peroxidation, and increased anti-oxidants expression in renal tubular epithelial cells during I/R injury. Co-culture of HMSCs with H/R-injured NRK-52E cells also lessened tubular cell death. Mechanistically, HMSCs downregulated the expression of pro-inflammatory interleukin-1β, proapoptotic Bax, and caspase 3. Notably, HMSCs also upregulated the expression of autophagy-related LC3B, Atg5 and Beclin 1 in renal tubular cells both in vivo and in vitro. Addition of 3-methyladenine suppressed the activity of autophagy and abrogated the renoprotective effects of HMSCs. The renoprotective effect of tubular autophagy was further validated in patients with ischemic AKI. AKI patients with higher renal LC3B expression were associated with better renal recovery. Conclusion The present study describes that the enhancing effect of MSCs, and especially of HMCSs, on tissue autophagy can be applied to suppress renal tubular apoptosis and attenuate renal impairment during renal I/R injury in the rat. Our findings provide further mechanistic support to HMSCs therapy and its investigation in clinical trials of ischemic AKI.


Sign in / Sign up

Export Citation Format

Share Document