Abstract 862: Ser517:-phosphorylation Of Sirt1 Is Required For Its Pi3k/akt-mediated Nuclear Translocation And Cardiomyocyte Protection Against Oxidant Stress In Failing Hearts.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Masaya Tanno ◽  
Tetsuji Miura ◽  
Takayuki Miki ◽  
Toshiyuki Yano ◽  
Yoshiyuki Horio ◽  
...  

[Purpose] We recently found that SIRT1, a protein deacetylase, shuttles between the nucleus and cytoplasm. In this study, we examined the role of nuclear SIRT1 in cardiomyocyte protection against oxidant stress and involvement of PI3K/Akt in the nuclear translocation. [Methods and Results] First, the critical intracellular location of SIRT1 for its anti-apoptotic function was examined. C2C12 cells were transfected with wild-type SIRT1 (WT) or SIRT1 with site-directed mutations in the nuclear localizing signal (mtNLS) and exposed to antimycin A (AA), an oxidative stressor. AA-induced apoptosis was suppressed in WT-transfected cells expressing SIRT1 in the nuclei compared with that in mtNLS-transfected cells expressing SIRT1 in the cytoplasm (TUNEL-positive cells = 4.4±0.7% vs. 34.6±8.0%). AA-induced apoptosis and also angiotensin II-(angII)-induced apoptosis in neonatal rat cardiomyocytes (NRCM) were suppressed by resveratrol, a SIRT1 activator. This protective effect of resveratrol was attenuated by transfection of SIRT1-siRNA but not by transfection of control siRNA. Next, we assessed the role of PI3K/Akt in nuclear translocation of SIRT1. SIRT1 in NRCM was localized in both the nucleus and cytoplasm under baseline conditions, and IGF-1 induced its nuclear translocation. This effect of IGF-1 was suppressed by LY294002 (LY), a PI3K inhibitor. Deletion mutagenesis study showed that LY-induced nuclear exclusion was observed for SIRT1[223–540] but not for SIRT1[223– 489]. Replacement of serine517 with alanine (S517A) increased cytoplasmic SIRT1, and S517A showed attenuated nuclear translocation in response to IGF-1, indicating that serine517 is the target site of PI3K/Akt. Finally, to confirm heart failure-associated SIRT1 translocation in vivo, myocardial infarction was induced in WKY rats. The number of ventricular cardiomyocytes with nuclear SIRT1 at 4 weeks after infarction was significantly larger than that in sham-operated hearts (10.2±2.9% vs. 0.7±0.2%). [Conclusion] The results suggest that phosphorylation of SIRT1 at Ser517 by PI3K/Akt is involved in nuclear translocation of SIRT1, which contributes to cardiomyocyte protection from oxidant stress-mediated injury in failing hearts.

2002 ◽  
Vol 367 (3) ◽  
pp. 729-740 ◽  
Author(s):  
Suwei WANG ◽  
Srigiridhar KOTAMRAJU ◽  
Eugene KONOREV ◽  
Shasi KALIVENDI ◽  
Joy JOSEPH ◽  
...  

Doxorubicin (DOX) is a widely used anti-tumour drug. Cardiotoxicity is a major toxic side effect of DOX therapy. Although recent studies implicated an apoptotic pathway in DOX-induced cardiotoxicity, the mechanism of DOX-induced apoptosis remains unclear. In the present study, we investigated the role of reactive oxygen species and the nuclear transcription factor nuclear factor κB (NF-κB) during apoptosis induced by DOX in bovine aortic endothelial cells (BAECs) and adult rat cardiomyocytes. DOX-induced NF-κB activation is both dose- and time-dependent, as demonstrated using electrophoretic mobility-shift assay and luciferase and p65 (Rel A) nuclear-translocation assays. Addition of a cell-permeant iron metalloporphyrin significantly suppressed NF-κB activation and apoptosis induced by DOX. Overexpression of glutathione peroxidase, which detoxifies cellular H2O2, significantly decreased DOX-induced NF-κB activation and apoptosis. Inhibition of DOX-induced NF-κB activation by a cell-permeant peptide SN50 that blocks translocation of the NF-κB complex into the nucleus greatly diminished DOX-induced apoptosis. Apoptosis was inhibited when IκB mutant vector, another NF-κB inhibitor, was added to DOX-treated BAECs. These results suggest that NF-κB activation in DOX-treated endothelial cells and myocytes is pro-apoptotic, in contrast with DOX-treated cancer cells, where NF-κB activation is anti-apoptotic. Removal of intracellular H2O2 protects endothelial cells and myocytes from DOX-induced apoptosis, possibly by inhibiting NF-κB activation. These findings suggest a novel mechanism for enhancing the therapeutic efficacy of DOX.


2009 ◽  
Vol 29 (7) ◽  
pp. 1869-1881 ◽  
Author(s):  
Takefumi Uemura ◽  
Takashi Sato ◽  
Takehiro Aoki ◽  
Akitsugu Yamamoto ◽  
Tetsuya Okada ◽  
...  

ABSTRACT p31, the mammalian orthologue of yeast Use1p, is an endoplasmic reticulum (ER)-localized soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) that forms a complex with other SNAREs, particularly syntaxin 18. However, the role of p31 in ER function remains unknown. To determine the role of p31 in vivo, we generated p31 conditional knockout mice. We found that homozygous deletion of the p31 gene led to early embryonic lethality before embryonic day 8.5. Conditional knockout of p31 in brains and mouse embryonic fibroblasts (MEFs) caused massive apoptosis accompanied by upregulation of ER stress-associated genes. Microscopic analysis showed vesiculation and subsequent enlargement of the ER membrane in p31-deficient cells. This type of drastic disorganization in the ER tubules has not been demonstrated to date. This marked change in ER structure preceded nuclear translocation of the ER stress-related transcription factor C/EBP homologous protein (CHOP), suggesting that ER stress-induced apoptosis resulted from disruption of the ER membrane structure. Taken together, these results suggest that p31 is an essential molecule involved in the maintenance of ER morphology and that its deficiency leads to ER stress-induced apoptosis.


2008 ◽  
Vol 86 (8) ◽  
pp. 536-540 ◽  
Author(s):  
Anjing Ren ◽  
Xiaohong Yan ◽  
Hong Lu ◽  
Jingsong Shi ◽  
Yuanjun Yin ◽  
...  

Apoptosis is well documented to be a common feature of many pathological processes of the heart. Exogenous endothelin-1 (ET-1) has been shown to be proapoptotic or antiapoptotic, depending on ET-1 concentration, cell type, and the ratio of ETA/ETB receptor subtypes. The role of endogenous ET-1 in cardiomyocyte apoptosis, however, is not clarified. This study observed the effects of the ETA-receptor antagonists BQ610 and BQ123 and the ETB-receptor antagonist BQ788 on hypoxia-induced apoptosis in primary cultured neonatal rat cardiomyocytes. Hypoxic apoptosis was induced by incubating cardiomyocytes in serum-free medium under 3% O2 and 5% CO2 for 24 h and evaluated by TUNEL analysis and flow cytometry. TUNEL analysis showed that the apoptotic cardiomyocytes constituted 24.2% ± 2.2% of the total cells under hypoxic conditions. Treatment with BQ610 (5 μmol/L) significantly reduced the apoptosis rate to 13.2% ± 3.7% (data from 4 independent experiments, p < 0.01 vs. hypoxia). Flow cytometry showed that the percentage of apoptotic cells positively stained with annexin V and propidium iodide was 42.76% ± 4.44% (n = 12) in cultures subjected to hypoxia. BQ123 at 0.04, 0.2, and 1.0 μmol/L dose-dependently reduced the apoptosis rate to 34.00% ± 10.35% (n = 6, p < 0.05), 30.38% ± 8.28% (n = 6, p < 0.01), and 22.89% ± 4.19% (n = 6, p < 0.01), respectively. In contrast, BQ788 did not affect hypoxic apoptosis. These findings suggested that endogenous ET-1 contributed to hypoxia-induced apoptosis in cultured cardiomyocytes, which was mediated by ETA receptors, but not by ETB receptors.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaodong Wu ◽  
Ting Zhang ◽  
Ping Lyu ◽  
Mengli Chen ◽  
Gehui Ni ◽  
...  

Background: Diabetic cardiomyopathy is the primary complication associated with diabetes mellitus and also is a major cause of death and disability. Limited pharmacological therapies are available for diabetic cardiomyopathy. Qiliqiangxin (QLQX), a Chinese medication, has been proven to be beneficial for heart failure patients. However, the role and the underlying protective mechanisms of QLQX in diabetic cardiomyopathy remain largely unexplored.Methods: Primary neonatal rat cardiomyocytes (NRCMs) were treated with glucose (HG, 40 mM) to establish the hyperglycemia-induced apoptosis model in vitro. Streptozotocin (STZ, 50 mg/kg/day for 5 consecutive days) was intraperitoneally injected into mice to establish the diabetic cardiomyopathy model in vivo. Various analyses including qRT-PCR, western blot, immunofluorescence [terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining] histology (hematoxylin–eosin and Masson's trichrome staining), and cardiac function (echocardiography) were performed in these mice. QLQX (0.5 μg/ml in vitro and 0.5 g/kg/day in vivo) was used in this study.Results: QLQX attenuated hyperglycemia-induced cardiomyocyte apoptosis via activating peroxisome proliferation-activated receptor γ (PPARγ). In vivo, QLQX treatment protected mice against STZ-induced cardiac dysfunction and pathological remodeling.Conclusions: QLQX attenuates diabetic cardiomyopathy via activating PPARγ.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kun Zhao ◽  
Chuanxi Yang ◽  
Jing Zhang ◽  
Wei Sun ◽  
Bin Zhou ◽  
...  

AbstractMyocardial infarction (MI), one of the most severe types of heart attack, exerts a strong negative effect on heart muscle by causing a massive and rapid loss of cardiomyocytes. However, the existing therapies do little to improve cardiac regeneration. Due to the role of methyltransferase-like 3 (METTL3) in the physiological proliferation of cardiomyocytes, we aimed to determine whether METTL3 could also promote cardiomyocyte proliferation under pathological conditions and to elucidate the underlying mechanism. The effects of METTL3 on cardiomyocyte proliferation and apoptosis were investigated in an in vivo rat model of MI and in an in vitro model of neonatal rat cardiomyocytes (NRCMs) exposed to hypoxia. We found that METTL3 expression was downregulated in hypoxia-exposed NRCMs and MI-induced rats. Furthermore, METTL3 pretreatment enhanced cardiomyocyte proliferation and inhibited cardiomyocyte apoptosis under hypoxic or MI conditions, and silencing METTL3 had the opposite effects. Additionally, METTL3 overexpression upregulated miR-17-3p expression. The miR-17-3p agomir mimicked the pro-proliferative and antiapoptotic effects of METTL3 in hypoxia-exposed cells or rats with MI, while the miR-17-3p antagomir blocked these effects. Additionally, pretreatment with the RNA-binding protein DGCR8 also hampered the protective role of METTL3 in hypoxia-exposed cells. Overall, the current study indicated that METTL3 could improve cardiomyocyte proliferation and subsequently ameliorate MI in rats by upregulating proliferation-related miR-17-3p in a DGCR8-dependent pri-miRNA-processing manner.


2015 ◽  
Vol 55 (3) ◽  
pp. 245-262 ◽  
Author(s):  
Ying Ying ◽  
Huazhang Zhu ◽  
Zhen Liang ◽  
Xiaosong Ma ◽  
Shiwei Li

Activation of apoptosis in cardiomyocytes by saturated palmitic acids contributes to cardiac dysfunction in diabetic cardiomyopathy. Beta-catenin (b-catenin) is a transcriptional regulator of several genes involved in survival/anti-apoptosis. However, its role in palmitate-induced cardiomyocyte apoptosis remains unclear. Glucagon-like peptide 1 (GLP1) has been shown to exhibit potential cardioprotective properties. This study was designed to evaluate the role of b-catenin signalling in palmitate-induced cardiomyocyte apoptosis and the molecular mechanism underlying the protective effects of GLP1 on palmitate-stressed cardiomyocytes. Exposure of neonatal rat cardiomyocytes to palmitate increased the fatty acid transporter CD36-mediated intracellular lipid accumulation and cardiomyocyte apoptosis, decreased accumulation and nuclear translocation of active b-catenin, and reduced expression of b-catenin target protein survivin and BCL2. These detrimental effects of palmitate were significantly attenuated by GLP1 co-treatment. However, the anti-apoptotic effects of GLP1 were markedly abolished when b-catenin was silenced with a specific short hairpin RNA. Furthermore, analysis of the upstream molecules and mechanisms responsible for GLP1-associated cardiac protection revealed that GLP1 restored the decreased phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3b (GSK3b) in palmitate-stimulated cardiomyocytes. In contrast, inhibition of Akt with an Akt-specific inhibitor MK2206 or blockade of GLP1 receptor (GLP1R) with a competitive antagonist exendin-(9–39) significantly abrogated the GLP1-mediated activation of GSK3b/b-catenin signalling, leading to increased apoptosis in palmitate-stressed cardiomyocytes. Collectively, our results demonstrated for the first time that the attenuated b-catenin signalling may contribute to palmitate-induced cardiomyocyte apoptosis, while GLP1 can protect cardiomyocytes from palmitate-induced apoptosis through activation of GLP1R/Akt/GSK3b-mediated b-catenin signalling.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Hong Feng ◽  
Shan-qi Mou ◽  
Wen-jing Li ◽  
Nan Zhang ◽  
Zi-ying Zhou ◽  
...  

Aims. The aim of this study was to investigate whether resveratrol (RSV) could ameliorate ischemia- and hypoxia-associated cardiomyocyte apoptosis and injury via inhibiting senescence signaling and inflammasome activation. Materials and Methods. Mice were treated with RSV by gastric tube (320 mg/kg/day) or vehicle one week before left coronary artery ligation or sham surgery until the end of the experiments. After pressure–volume loop analysis, mouse hearts were harvested for histopathological (including PSR, TTC, TUNEL staining, immunohistochemistry, and immunofluorescence) and molecular analysis by western blotting and RT-PCR. In addition, neonatal rat cardiomyocytes (NRCMs), cardiac fibroblasts (CFs), and macrophages were isolated for in vitro experiments. Key Findings. RSV treatment decreased mortality and improved cardiac hemodynamics. RSV inhibited the expression of senescence markers (p53, p16, and p19), inflammasome markers (NLRP3 and Cas1 p20), and nuclear translocation of NF-κB, hence alleviating infarction area, fibrosis, and cell apoptosis. RSV also inhibited expression of interleukin- (IL-) 1β, IL-6, tumor necrosis factor-α, and IL-18 in vivo. In in vitro experiment, RSV prevented hypoxia-induced NRCM senescence and apoptosis. After inhibition of sirtuin 1 (Sirt1) by EX27, RSV failed to inhibit p53 acetylation and expression. Moreover, RSV could inhibit expression of NLRP3 and caspase 1 p20 in NRCMs, CFs, and macrophages, respectively, in in vitro experiments. Significance. Our findings revealed that RSV protected against ischemia-induced mouse heart injury in vivo and hypoxia-induced NRCM injury in vitro via regulating Sirt1/p53-mediated cell senescence and inhibiting NLRP3-mediated inflammasome activation.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Ran Li ◽  
Yuan Liu ◽  
Ying-guang Shan ◽  
Lu Gao ◽  
Fang Wang ◽  
...  

Previous studies demonstrated that Bailcalin (BAI) prevented cardiac injuries under different disease models. Whether BAI protected against type 2 diabetes mellitus- (T2DM-) associated cardiomyopathy was investigated in this study. T2DM was established by the combination of streptozotocin injection and high-fat diet in mice. BAI was administered daily for 6 months. After evaluating cardiac functions, mice hearts were removed and processed for morphological, biochemical, and molecular mechanism analyses. Neonatal rat cardiomyocytes (NRCM) were isolated and treated with high glucose and palmitate (HG/Pal) for in vitro investigation. BAI significantly ameliorated T2DM-induced cardiomyocyte hypertrophy, interstitial fibrosis, and lipid accumulation accompanied by markedly improved cardiac functions in diabetic mice. Mechanically, BAI restored decreased phosphorylation of AMPK and enhanced expression and nuclei translocation of Nrf2. In in vitro experiments, BAI also prevented NRCM from HG/Pal-induced apoptosis and oxidative stress injuries by increasing p-AMPK and Nrf2 accumulation. The means by which BAI restored p-AMPK seemed to be related to the antioxidative effects of Nrf2 after silencing AMPK or Nrf2 in NRCM. Furthermore, BAI regulated Nrf2 by inhibiting Nrf2 ubiquitination and consequent degradation mediated by Keap1. This study showed that BAI alleviated diabetes-associated cardiac dysfunction and cardiomyocyte injuries in vivo and in vitro via Keap1/Nrf2/AMPK-mediated antioxidation and lipid-lowering effects. BAI might be a potential adjuvant drug for diabetes cardiomyopathy treatment.


Sign in / Sign up

Export Citation Format

Share Document