Abstract 934: Contributory Role of VEGF Overexpression in Endothelin-1-induced Cardiomyocyte Hypertrophy: Involvement of Hyopoxia Inducible Factor
Although endothelin-1 (ET-1) stimulates vascular endothelial growth factor (VEGF) expression in a variety of cells, including endothelial cells and vascular smooth muscle cells, the effect of ET-1 on expression of VEGF and its receptors in cardiomyocytes is unknown. In the present study, we found that treatment of neonatal rat cardiomyocytes with ET-1 for 24 h resulted in upregulation of VEGF and its two principle receptors, fetal liver kinase (flk)-1 and fms-like tyrosine kinase (flt)-1, in a concentration-dependent manner (10 −12 -10 −6 M). ET-1 treatment also caused significant cardiomyocyte hypertrophy, as indicated by increases in cell surface area (2.0-fold compared to control) and 14 C-leucine uptake (1.8 fold) by cardiomyocytes. And this ET-1 mediated upregulation of VEGF in cardiomyocytes was associated with the induction of hypoxia inducible factor (HIF)-1β and HIF-2α, not HIF-1α. Treatment with TA-0201 (10 −6 M), an ET A selective blocker, eliminated ET-1-induced overexpression of VEGF and its receptors as well as cardiomyocyte hypertrophy. Treatment with VEGF neutralizing peptides (5–10 μg/ml) partially but significantly inhibited ET-1-induced cardiomyocyte hypertrophy. Both TA-0201 and VEGF neutralizing peptides also significantly prevented the increase of phosphorylated KDR, which implies the activation of VEGF system in ET-1 induced hypertrophied cardiomyocyte. These results suggest that ET-1 treatment of cardiomyocytes promotes overexpression of VEGF and its receptors via activation of ET A receptors, and consequently the upregulated VEGF signaling system appears to contribute, at least in part, to ET-1-induced cardiomyocyte hypertrophy.