Abstract 1082: Cytoskeletal Protein 4.1R Affects Repolarisation And Regulates Calcium Handling In The Heart

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Cesare M Terracciano ◽  
Nadia Sohrabi ◽  
Urszula Siedlecka ◽  
Mark A Stagg ◽  
Gopal K Soppa ◽  
...  

The 4.1 proteins are a family of multifunctional adaptor proteins that organise signalling/transport/cell adhesion molecules. They are capable of interaction with the spectrin-actin network thereby conferring mechanical stability to the cell membrane, with several ion transporters associated to this macromolecular complex. Protein 4.1R is expressed in the heart and upregulated in deteriorating human heart failure. However, no data exists on the roles of protein 4.1R in myocardial regulation and function. In particular, it is unknown whether this protein can influence cardiac contractility and/or electrophysiology. 4.1R-deficient mice (KO) were studied using echocardiography and ECG monitoring with radiotelemetry. Left ventricular dimensions were increased in KO mice (LV diameter - Dia (cm): WT = 0.43 ± 0.01 [6] (mean ± SEM [n]); KO = 0.49 ± 0.01 [6]; p < 0.01) - Sys cm): WT = 0.29 ± 0.01 [6]; KO = 0.34 ± 0.02 [6]; p < 0.05) with no changes in ejection fraction and fractional shortening. ECG analysis revealed reduced heart rate (RR interval (ms): WT = 113±5 [6]; KO = 139 ± 601 [6]; p < 0.01) accompanied by prolonged QT interval (corrected (ms): WT = 46 ± 2 [6]; KO = 52 ± 1 [6]; p < 0.05). The action potential duration (APD) measured in isolated ventricular myocytes was prolonged in KO (APD 90% at 1Hz (ms) WT = 146 ± 20 [21]; KO = 231 ± 29 [28]; p < 0.05). Ca transients, elicited by 1Hz field-stimulation and measured using the fluorescent indicator indo-1, were larger (amplitude (ratio units r.u.): WT = 0.07 ± 0.006 [22]; KO = 0.1 ± 0.006 [33]; p<0.05) and slower to decay in the KO group (time to 50% decline (ms): WT = 78 ± 3 [22]; KO = 91 ± 3 [33]; p < 0.05). This was associated with increased SR Ca content, (20 mM caffeine-induced indo-1 transient amplitude (r.u.): WT = 0.09 ± 0.01 [7]; KO = 0.13 ± 0.01 [16]; p < 0.05) and increased frequency of Ca sparks, measured by confocal microscopy using Fluo-4 (sparks/100μm/s. WT = 0.52 ± 0.08 [111]; KO = 1.21 ± 0.14 [124]; p < 0.001). We conclude that protein 4.1 R affects repolarisation of cardiac myocytes. This may have a role in bringing about QT prolongation in KO mice. The prolonged APD, together with effects on Ca handling proteins, may alter Ca regulation and cell contractility. The specific mechanisms controlling these effects are under investigation.

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Xiaosong Gu ◽  
Jiang Xu ◽  
Xiao-Ping Yang ◽  
Edward Peterson ◽  
Pamela Harding

Prostaglandin E2 (PGE2) EP receptors EP3 and EP4 are present in the heart and signal via decreased and increased cAMP production, respectively. Previously we reported that cardiomyocyte-specific EP4 KO mice develop a phenotype of dilated cardiomyopathy with reduced ejection fraction. We thus hypothesized that PGE2 decreases contractility via EP3. To test this hypothesis, the effects of PGE2 and the EP1/EP3 agonist sulprostone (sulp) were examined in the mouse langendorff preparation and in adult mouse cardiomyocytes (AVM) using the IonOptix cell contractility system. Isolated hearts of 18-20 wk old male C57Bl/6 mice were mounted and equilibrated for 10 min, then perfused with PGE2 (10 -6 mol/l) or sulp (10 -6 mol/l) for 30 min. Values at the end of equilibration were set to 100%. Compared to vehicle, PGE2 decreased +dp/dt (77.8±3% vs 96.7±3%, p<0.01) and left ventricular developed pressure, LVDP (77.2±2% vs 96.8±3%, p<0.001). Sulp decreased +dp/dt (75.9±2% vs 96.7±3%, p<0.001), -dp/dt (72.2±1% vs 85.7±1%, p<0.01) and LVDP (70.9±1% vs 96.8±3%, p<0.001). The effects of both PGE2 and sulp were reversed by the EP3 antagonist, L789,106 (10 -6 mol/l). Myocyte contractility was evaluated on the IonOptix system with pacing at 1Hz. Treatment with PGE2 (10 -9 M) for 10 min reduced contractility as measured by peak height (3.69 ± 0.48% for vehicle vs 2.00 ± 0.22% for PGE2, p < 0.05 ), departure velocity (-171.9 ± 22.9 um/sec for vehicle vs -106.3± 12.5 um/sec for PGE2, p < 0.05) and return velocity (87.7 ± 16.3 um/sec for vehicle vs 36.7 ± 6.6 um/sec for PGE2, p < 0.05) with similar effects noted for sulp. Sulp reduced change in peak height (4.79 ± 1.15% for vehicle vs 1.81 ± 0.37% for sulp, p < 0.05), departure velocity (-169.1 ± 35.8 um/sec for vehicle vs -59.4 ± 10.3 um/sec for sulp, p < 0.05) and return velocity (86.5 ± 23.8 um/sec for vehicle vs 16.9 ± 14.7 um/sec for sulp, p < 0.05). We then examined the acute effects of PGE2 and sulp on expression of phosphorylated phospholamban (PLN) and SERCA using Western blot. Treatment of AVM for 15min with either PGE2 or sulp decreased expression of phosphorylated PLN corrected to total PLN, by 67% and 43%. SERCA2a expression was unaffected. In conclusion, PGE2 and sulp reduce contractility via the EP3 receptor through effects on PLN.


2011 ◽  
Vol 301 (1) ◽  
pp. H157-H163 ◽  
Author(s):  
Sharon M. Cawley ◽  
Starsha Kolodziej ◽  
Fumito Ichinose ◽  
Peter Brouckaert ◽  
Emmanuel S. Buys ◽  
...  

In the heart, nitric oxide (NO) modulates contractile function; however, the mechanisms responsible for this effect are incompletely understood. NO can elicit effects via a variety of mechanisms including S-nitrosylation and stimulation of cGMP synthesis by soluble guanylate cyclase (sGC). sGC is a heterodimer comprised of a β1- and an α1- or α2-subunit. sGCα1β1 is the predominant isoform in the heart. To characterize the role of sGC in the regulation of cardiac contractile function by NO, we compared left ventricular cardiac myocytes (CM) isolated from adult mice deficient in the sGC α1-subunit (sGCα1−/−) and from wild-type (WT) mice. Sarcomere shortening under basal conditions was less in sGCα1−/− CM than in WT CM. To activate endogenous NO synthesis from NO synthase 3, CM were incubated with the β3-adrenergic receptor (β3-AR) agonist BRL 37344. BRL 37344 decreased cardiac contractility in WT CM but not in sGCα1−/− myocytes. Administration of spermine NONOate, an NO donor compound, did not affect sarcomeric shortening in CM of either genotype; however, in the presence of isoproterenol, addition of spermine NONOate reduced sarcomere shortening in WT but not in sGCα1−/− CM. Neither BRL 37344 nor spermine NONOate altered calcium handling in CM of either genotype. These findings suggest that sGCα1 exerts a positive inotropic effect under basal conditions, as well as mediates the negative inotropic effect of β3-AR signaling. Additionally, our work demonstrates that sGCα1β1 is required for NO to depress β1/β2-AR-stimulated cardiac contractility and that this modulation is independent of changes in calcium handling.


2008 ◽  
Vol 295 (5) ◽  
pp. R1439-R1445 ◽  
Author(s):  
Jorge Suarez ◽  
Brian Scott ◽  
Wolfgang H. Dillmann

Diabetic cardiomyopathy is characterized by reduced cardiac contractility independent of vascular disease. A contributor to contractile dysfunction in the diabetic heart is impaired sarcoplasmic reticulum function with reduced sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a) pump activity, leading to disturbed intracellular calcium handling. It is currently unclear whether increasing SERCA2a activity in hearts with existing diabetic cardiomyopathy could still improve calcium flux and contractile performance. To test this hypothesis, we generated a cardiac-specific tetracycline-inducible double transgenic mouse, which allows for doxycycline (DOX)-based inducible SERCA2a expression in which DOX exposure turns on SERCA2a expression. Isolated cardiomyocytes and Langendorff perfused hearts from streptozotocin-induced diabetic mice were studied. Our results show that total SERCA2a protein levels were decreased in the diabetic mice by 60% compared with control. SERCA2a increased above control values in the diabetic mice after DOX. Dysfunctional contractility in the diabetic cardiomyocyte was restored to normal by induction of SERCA2a expression. Calcium transients from diabetic cardiomyocytes showed a delayed rate of diastolic calcium decay of 66%, which was reverted toward normal after SERCA2a expression induced by DOX. Global cardiac function assessed in the diabetic perfused heart showed diminished left ventricular pressure, rate of contraction, and relaxation. These parameters were returned to control values by SERCA2a expression. In conclusion, we have used mice allowing for inducible expression of SERCA2a and could demonstrate that increased expression of SERCA2a leads to improved cardiac function in mice with an already established diabetic cardiomyopathy in absence of detrimental effects.


2004 ◽  
Vol 286 (3) ◽  
pp. H1146-H1153 ◽  
Author(s):  
Jo El J. Schultz ◽  
Betty J. Glascock ◽  
Sandra A. Witt ◽  
Michelle L. Nieman ◽  
Kalpana J. Nattamai ◽  
...  

We recently developed a mouse model with a single functional allele of Serca2 ( Serca2+/–) that shows impaired cardiac contractility and relaxation without overt heart disease. The goal of this study was to test the hypothesis that chronic reduction in sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2 levels in combination with an increased hemodynamic load will result in an accelerated pathway to heart failure. Age-matched wild-type and Serca2+/– mice were subjected to 10 wk of pressure overload via transverse aortic coarctation surgery. Cardiac hypertrophy and heart failure were assessed by echocardiography, gravimetry/histology, hemodynamics, and Western blotting analyses. Our results showed that ∼64% of coarcted Serca2+/– mice were in heart failure compared with 0% of coarcted wild-type mice ( P < 0.05). Overall, morbidity and mortality were greatly increased in Serca2+/– mice under pressure overload. Echocardiography assessment revealed a significant increase in left ventricular (LV) mass, and LV hypertrophy in coarcted Serca2+/– mice converted from a concentric to an eccentric pattern, similar to that seen in human heart failure. Coarcted Serca2+/– mice had decreased contractile/systolic and relaxation/diastolic performance and/or function compared with coarcted wild-type mice ( P < 0.05), despite a similar duration and degree of pressure overload. SERCA2a protein levels were significantly reduced (>50%) in coarcted Serca2+/– mice compared with noncoarcted and coarcted wild-type mice. Our findings suggest that reduction in SERCA2 levels in combination with an increased hemodynamic load results in an accelerated pathway to heart failure.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Cory Parks ◽  
Ryan D Sullivan ◽  
Salvatore Mancarella

Stromal Interaction Protein 1 (STIM1) is the intracellular component of the store operated calcium channels. It is a ubiquitous Ca2+ sensor, prevalently located in the sarcoplasmic reticulum. In non-excitable cells, STIM1 is a key element in the generation of Ca2+signals that lead to gene expression and cell proliferation. A growing body of literature now suggests that STIM1 is important for normal heart function and plays a key role in the development of pathological cardiac hypertrophy. However, the precise mechanisms involving STIM1 and the Ca2+ signaling in excitable cells are not clearly established. We show that in neonatal rat cardiomyocytes, the spatial properties of STIM1-dependent Ca2+ signals determine restricted Ca2+ microdomains that regulate myofilaments remodeling and spatially segregated activation of pro-hypertrophic factors. Indeed, in vivo data obtained from an inducible cardiac restricted STIM1 knockout mouse, exhibited left ventricular dilatation associated with reduced cardiac contractility, which was corroborated by impaired single cell contractility. Furthermore, mice lacking STIM1 showed less adverse structural remodeling in response to pathological pressure overload-induced cardiac hypertrophy (transverse aortic constriction, TAC). We further show that the Ca2+ pool associated with STIM1 is the ON switch for extracellular signal-regulated kinase (ERK1/2)-mediated cytoplasm to nucleus signaling. These results highlight how STIM1-dependent Ca2+ microdomains have a major impact on intracellular Ca2+ homeostasis, cytoskeletal remodeling, signaling and cardiac function, even when excitation-contraction coupling is present.


2013 ◽  
Vol 304 (5) ◽  
pp. H697-H708 ◽  
Author(s):  
Ingeborg Friehs ◽  
Douglas B. Cowan ◽  
Yeong-Hoon Choi ◽  
Kendra M. Black ◽  
Reanne Barnett ◽  
...  

Right ventricular (RV) and left ventricular (LV) myocardium differ in their pathophysiological response to pressure-overload hypertrophy. In this report we use microarray and proteomic analyses to identify pathways modulated by LV-aortic banding (AOB) and RV-pulmonary artery banding (PAB) in the immature heart. Newborn New Zealand White rabbits underwent banding of the descending thoracic aorta [LV-AOB; n = 6]. RV-PAB was achieved by banding the pulmonary artery ( n = 6). Controls ( n = 6 each) were sham-manipulated. After 4 (LV-AOB) and 6 (RV-PAB) wk recovery, the hearts were removed and matched RNA and proteins samples were isolated for microarray and proteomic analysis. Microarray and proteomic data demonstrate that in LV-AOB there is increased transcript expression levels for oxidative phosphorylation, mitochondria energy pathways, actin, ILK, hypoxia, calcium, and protein kinase-A signaling and increased protein expression levels of proteins for cellular macromolecular complex assembly and oxidative phosphorylation. In RV-PAB there is also an increased transcript expression levels for cardiac oxidative phosphorylation but increased protein expression levels for structural constituents of muscle, cardiac muscle tissue development, and calcium handling. These results identify divergent transcript and protein expression profiles in LV-AOB and RV-PAB and provide new insight into the biological basis of ventricular specific hypertrophy. The identification of these pathways should allow for the development of specific therapeutic interventions for targeted treatment and amelioration of LV-AOB and RV-PAB to ameliorate morbidity and mortality.


2013 ◽  
Vol 115 (10) ◽  
pp. 1572-1580 ◽  
Author(s):  
Vigdis Hillestad ◽  
Frank Kramer ◽  
Stefan Golz ◽  
Andreas Knorr ◽  
Kristin B. Andersson ◽  
...  

In human heart failure (HF), reduced cardiac function has, at least partly, been ascribed to altered calcium homeostasis in cardiomyocytes. The effects of the calcium sensitizer levosimendan on diastolic dysfunction caused by reduced removal of calcium from cytosol in early diastole are not well known. In this study, we investigated the effect of long-term levosimendan treatment in a murine model of HF where the sarco(endo)plasmatic reticulum ATPase ( Serca) gene is specifically disrupted in the cardiomyocytes, leading to reduced removal of cytosolic calcium. After induction of Serca2 gene disruption, these mice develop marked diastolic dysfunction as well as impaired contractility. SERCA2 knockout (SERCA2KO) mice were treated with levosimendan or vehicle from the time of KO induction. At the 7-wk end point, cardiac function was assessed by echocardiography and pressure measurements. Vehicle-treated SERCA2KO mice showed significantly diminished left-ventricular (LV) contractility, as shown by decreased ejection fraction, stroke volume, and cardiac output. LV pressure measurements revealed a marked increase in the time constant (τ) of isovolumetric pressure decay, showing impaired relaxation. Levosimendan treatment significantly improved all three systolic parameters. Moreover, a significant reduction in τ toward normalization indicated improved relaxation. Gene-expression analysis, however, revealed an increase in genes related to production of the ECM in animals treated with levosimendan. In conclusion, long-term levosimendan treatment improves both contractility and relaxation in a heart-failure model with marked diastolic dysfunction due to reduced calcium transients. However, altered gene expression related to fibrosis was observed.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
M Tokodi ◽  
BK Lakatos ◽  
M Ruppert ◽  
A Olah ◽  
AA Sayour ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): This work was supported by the New National Excellence Programme (ÚNKP-19-3-I) of the Ministry for Innovation and Technology in Hungary, and the Artificial Intelligence Research Field Excellence Programme of the National Research, Development and Innovation Office of the Ministry of Innovation and Technology in Hungary. Background Global longitudinal strain (GLS) by speckle-tracking echocardiography (STE) is a sensitive parameter of left ventricular (LV) systolic function. Nevertheless, GLS is dependent on loading conditions. Through the analysis of pressure-strain loops, myocardial work was recently introduced and tested in different clinical scenarios. Myocardial work incorporates afterload, but still, it neglects changes in preload and LV geometry. Purpose Accordingly, our aim was to test our hypothesis that adding instantaneous LV size to myocardial work calculation can further mitigate the load-dependency of GLS, and therefore, a better correlation with intrinsic myocardial contractility can be achieved. Methods Volume overload-induced heart failure was established by an aortocaval fistula (ACF) in male Wistar rats (n = 12). Age-matched sham-operated animals served as controls (n = 12). STE was performed to assess GLS, which was immediately followed by invasive pressure-volume (P-V) analysis to assess LV pressure and to compute a gold-standard index of cardiac contractility (preload recruitable stroke work [PRSW]). Global myocardial work index (GMWI) was calculated from GLS and the invasively measured LV pressure. To compute GMWI indexed to LV area (GMWIA), the instantaneous power (calculated by multiplying the strain rate and the instantaneous LV pressure) was divided by the instantaneous LV area, and then it was integrated from mitral valve closure until mitral valve opening. Results LV ejection fraction did not differ significantly (ACF vs. controls: 59 ± 4 vs. 65 ± 9%, p = NS), whereas GLS (Figure 1A - representative animals) was slightly decreased in the ACF group (-13.2 ± 2.3 vs. -15.4 ± 1.9%, p &lt; 0.05). In contrast, PRSW, GMWI (Figure 1B - representative animals) and GMWIA (Figure 1C - representative animals) were considerably reduced in ACF compared to controls (57 ± 13 vs. 111 ± 38mmHg, 1383 ± 382 vs. 1928 ± 281mmHg%, 11.6 ± 3.7 vs. 47.9 ± 22.8mmHg%/mm2, all p &lt; 0.01). GLS showed moderate correlation with PRSW (r=-0.550, p &lt; 0.01), whereas GMWI correlated more significantly, but still moderately with the invasively measured LV contractility (r = 0.681, p &lt; 0.001). Correlation between the pressure-area-strain loop-derived GMWIA and P-V analysis-derived PRSW (Figure 1D) was found to be very strong (r = 0.924, p &lt; 0.001). Conclusions In the case of LV volume overload-induced heart failure, our pressure-area-strain loop-derived metric reflected LV contractility better than GLS and even GMWI. Therefore, the incorporation of instantaneous LV size into myocardial work calculation represents a promising clinical tool to assess and monitor intrinsic myocardial function independently of loading conditions. Abstract Figure 1


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Wen Zhao ◽  
Xiaojing Shi ◽  
Wenjuan Zhou ◽  
Huimin Wang ◽  
Xuepeng Geng ◽  
...  

Peroxiredoxin II (prxII), a cytosolic form of the anti-oxidant peroxiredoxin family, was recently found to be decreased in failing human hearts. Interestingly, in hyperdynamic hearts of two genetically modified mouse models with: a) phospholamban ablation; and b) overexpression of the active inhibitor-1 of protein phosphatase 1, the levels of this cellular peroxidase (prxII) were markedly increased. Acute overexpression of prxII by adenoviral-delivery in adult rat cardiomyocytes (Ad-prxII) was associated with decreases in the basal rates of contraction and relaxation, as well as calcium kinetics. Accordingly, Ad-prxII-AS infected cardiomyocytes exhibited enhanced contractile parameters and Ca-kinetics. The depressed or increased contractility by Ad-prxII or Ad-prxII-AS was associated with parallel decreases or increases in phosphorylation of phospholamban (Ser16 and Thr17). To determine the in vivo effects of prxII on cardiac contractility, three transgenic lines (TG) with 2-3 fold cardiac-specific overexpression of prxII were generated and their cardiac morphologic and functional phenotypes were characterized. The TG mice exhibited no alterations in cardiac pathology or morphology up to 4 months of age. However, langendorf perfusions revealed that cardiac contractility, including the rates of contraction and relaxation (±dp/dtmax) as well as the left ventricular end systolic pressure (LVESP), were significantly depressed in TG mice (to 75, 76 and 63%, respectively), compared to WTs (100%). The depressed function was not associated with any alterations in the expression levels of key SR calcium handling proteins: SERCA2, total phospholamban, calsequestrin and ryanodine receptor. However, the levels of the phosphorylated PLN at Ser16 were found to be reduced to 50% in the TG mice, compared to WTs. These findings indicate that prxII, an anti-oxidant protein, may regulate basal cardiac contractile performance in vivo through phospholamban phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document