Accelerated onset of heart failure in mice during pressure overload with chronically decreased SERCA2 calcium pump activity

2004 ◽  
Vol 286 (3) ◽  
pp. H1146-H1153 ◽  
Author(s):  
Jo El J. Schultz ◽  
Betty J. Glascock ◽  
Sandra A. Witt ◽  
Michelle L. Nieman ◽  
Kalpana J. Nattamai ◽  
...  

We recently developed a mouse model with a single functional allele of Serca2 ( Serca2+/–) that shows impaired cardiac contractility and relaxation without overt heart disease. The goal of this study was to test the hypothesis that chronic reduction in sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2 levels in combination with an increased hemodynamic load will result in an accelerated pathway to heart failure. Age-matched wild-type and Serca2+/– mice were subjected to 10 wk of pressure overload via transverse aortic coarctation surgery. Cardiac hypertrophy and heart failure were assessed by echocardiography, gravimetry/histology, hemodynamics, and Western blotting analyses. Our results showed that ∼64% of coarcted Serca2+/– mice were in heart failure compared with 0% of coarcted wild-type mice ( P < 0.05). Overall, morbidity and mortality were greatly increased in Serca2+/– mice under pressure overload. Echocardiography assessment revealed a significant increase in left ventricular (LV) mass, and LV hypertrophy in coarcted Serca2+/– mice converted from a concentric to an eccentric pattern, similar to that seen in human heart failure. Coarcted Serca2+/– mice had decreased contractile/systolic and relaxation/diastolic performance and/or function compared with coarcted wild-type mice ( P < 0.05), despite a similar duration and degree of pressure overload. SERCA2a protein levels were significantly reduced (>50%) in coarcted Serca2+/– mice compared with noncoarcted and coarcted wild-type mice. Our findings suggest that reduction in SERCA2 levels in combination with an increased hemodynamic load results in an accelerated pathway to heart failure.

2014 ◽  
Vol 306 (7) ◽  
pp. H1066-H1077 ◽  
Author(s):  
JuFang Wang ◽  
Jianliang Song ◽  
Erhe Gao ◽  
Xue-Qian Zhang ◽  
Tongda Gu ◽  
...  

Phospholemman (PLM), when phosphorylated at Ser68, inhibits cardiac Na+/Ca2+ exchanger 1 (NCX1) and relieves its inhibition on Na+-K+-ATPase. We have engineered mice in which expression of the phosphomimetic PLM S68E mutant was induced when dietary doxycycline was removed at 5 wk. At 8–10 wk, compared with noninduced or wild-type hearts, S68E expression in induced hearts was ∼35–75% that of endogenous PLM, but protein levels of sarco(endo)plasmic reticulum Ca2+-ATPase, α1- and α2-subunits of Na+-K+-ATPase, α1c-subunit of L-type Ca2+ channel, and phosphorylated ryanodine receptor were unchanged. The NCX1 protein level was increased by ∼47% but the NCX1 current was depressed by ∼34% in induced hearts. Isoproterenol had no effect on NCX1 currents but stimulated Na+-K+-ATPase currents equally in induced and noninduced myocytes. At baseline, systolic intracellular Ca2+ concentrations ([Ca2+]i), sarcoplasmic reticulum Ca2+ contents, and [Ca2+]i transient and contraction amplitudes were similar between induced and noninduced myocytes. Isoproterenol stimulation resulted in much higher systolic [Ca2+]i, sarcoplasmic reticulum Ca2+ content, and [Ca2+]i transient and contraction amplitudes in induced myocytes. Echocardiography and in vivo close-chest catheterization demonstrated similar baseline myocardial function, but isoproterenol induced a significantly higher +dP/d t in induced compared with noninduced hearts. In contrast to the 50% mortality observed in mice constitutively overexpressing the S68E mutant, induced mice had similar survival as wild-type and noninduced mice. After ischemia-reperfusion, despite similar areas at risk and left ventricular infarct sizes, induced mice had significantly higher +dP/d t and −dP/d t and lower perioperative mortality compared with noninduced mice. We propose that phosphorylated PLM may be a novel therapeutic target in ischemic heart disease.


Author(s):  
Mortimer Korf-Klingebiel ◽  
Marc R. Reboll ◽  
Felix Polten ◽  
Natalie Weber ◽  
Felix Jäckle ◽  
...  

Background: Inflammation contributes to the pathogenesis of heart failure, but there is limited understanding of inflammation's potential benefits. Inflammatory cells secrete myeloid-derived growth factor (MYDGF) to promote tissue repair after acute myocardial infarction. We hypothesized that MYDGF has a role in cardiac adaptation to persistent pressure overload. Methods: We defined the cellular sources and function of MYDGF in wild-type, Mydgf -deficient ( Mydgf -/- ), and Mydgf bone marrow-chimeric or bone marrow-conditional transgenic mice with pressure overload-induced heart failure after transverse aortic constriction surgery. We measured MYDGF plasma concentrations by targeted liquid chromatography-mass spectrometry. We identified MYDGF signaling targets by phosphoproteomics and substrate-based kinase activity inference. We recorded Ca 2+ transients and sarcomere contractions in isolated cardiomyocytes. Additionally, we explored the therapeutic potential of recombinant MYDGF. Results: MYDGF protein abundance increased in the left ventricular (LV) myocardium and in blood plasma of pressure-overloaded mice. Patients with severe aortic stenosis also had elevated MYDGF plasma concentrations, which declined after transcatheter aortic valve implantation. Monocytes and macrophages emerged as the main MYDGF sources in the pressure-overloaded murine heart. While Mydgf -/- mice had no apparent phenotype at baseline, they developed more severe LV hypertrophy and contractile dysfunction during pressure overload than wild-type mice. Conversely, conditional transgenic overexpression of MYDGF in bone marrow-derived inflammatory cells attenuated pressure overload-induced hypertrophy and dysfunction. Mechanistically, MYDGF inhibited G protein coupled receptor agonist-induced hypertrophy and augmented sarco/endoplasmic reticulum Ca 2+ ATPase 2a (SERCA2a) expression in cultured neonatal rat cardiomyocytes by enhancing PIM1 serine/threonine kinase expression and activity. Along this line, cardiomyocytes from pressure-overloaded Mydgf -/- mice displayed reduced PIM1 and SERCA2a expression, greater hypertrophy, and impaired Ca 2+ cycling and sarcomere function compared to cardiomyocytes from pressure-overloaded wild-type mice. Transplanting Mydgf -/- mice with wild-type bone marrow cells augmented cardiac PIM1 and SERCA2a levels and ameliorated pressure overload-induced hypertrophy and dysfunction. Pressure-overloaded Mydgf -/- mice were similarly rescued by adenoviral Serca2a gene transfer. Treating pressure-overloaded wild-type mice subcutaneously with recombinant MYDGF enhanced SERCA2a expression, attenuated LV hypertrophy and dysfunction, and improved survival. Conclusions: These findings establish a MYDGF-based adaptive crosstalk between inflammatory cells and cardiomyocytes that protects against pressure overload-induced heart failure.


2014 ◽  
Vol 306 (10) ◽  
pp. H1453-H1463 ◽  
Author(s):  
Fuzhong Qin ◽  
Deborah A. Siwik ◽  
David R. Pimentel ◽  
Robert J. Morgan ◽  
Andreia Biolo ◽  
...  

Oxidative stress in the myocardium plays an important role in the pathophysiology of hemodynamic overload. The mechanism by which reactive oxygen species (ROS) in the cardiac myocyte mediate myocardial failure in hemodynamic overload is not known. Accordingly, our goals were to test whether myocyte-specific overexpression of peroxisomal catalase (pCAT) that localizes in the sarcoplasm protects mice from hemodynamic overload-induced failure and prevents oxidation and inhibition of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), an important sarcoplasmic protein. Chronic hemodynamic overload was caused by ascending aortic constriction (AAC) for 12 wk in mice with myocyte-specific transgenic expression of pCAT. AAC caused left ventricular hypertrophy and failure associated with a generalized increase in myocardial oxidative stress and specific oxidative modifications of SERCA at cysteine 674 and tyrosine 294/5. pCAT overexpression ameliorated myocardial hypertrophy and apoptosis, decreased pathological remodeling, and prevented the progression to heart failure. Likewise, pCAT prevented oxidative modifications of SERCA and increased SERCA activity without changing SERCA expression. Thus cardiac myocyte-restricted expression of pCAT effectively ameliorated the structural and functional consequences of chronic hemodynamic overload and increased SERCA activity via a post-translational mechanism, most likely by decreasing inhibitory oxidative modifications. In pressure overload-induced heart failure cardiac myocyte cytosolic ROS play a pivotal role in mediating key pathophysiologic events including hypertrophy, apoptosis, and decreased SERCA activity.


2016 ◽  
Vol 310 (11) ◽  
pp. H1583-H1591 ◽  
Author(s):  
Sakima A. Smith ◽  
Langston D. Hughes ◽  
Crystal F. Kline ◽  
Amber N. Kempton ◽  
Lisa E. Dorn ◽  
...  

β2-Spectrin is critical for integrating membrane and cytoskeletal domains in excitable and nonexcitable cells. The role of β2-spectrin for vertebrate function is illustrated by dysfunction of β2-spectrin-based pathways in disease. Recently, defects in β2-spectrin association with protein partner ankyrin-B were identified in congenital forms of human arrhythmia. However, the role of β2-spectrin in common forms of acquired heart failure and arrhythmia is unknown. We report that β2-spectrin protein levels are significantly altered in human cardiovascular disease as well as in large and small animal cardiovascular disease models. Specifically, β2-spectrin levels were decreased in atrial samples of patients with atrial fibrillation compared with tissue from patients in sinus rhythm. Furthermore, compared with left ventricular samples from nonfailing hearts, β2-spectrin levels were significantly decreased in left ventricle of ischemic- and nonischemic heart failure patients. Left ventricle samples of canine and murine heart failure models confirm reduced β2-spectrin protein levels. Mechanistically, we identify that β2-spectrin levels are tightly regulated by posttranslational mechanisms, namely Ca2+- and calpain-dependent proteases. Furthermore, consistent with this data, we observed Ca2+- and calpain-dependent loss of β2-spectrin downstream effector proteins, including ankyrin-B in heart. In summary, our findings illustrate that β2-spectrin and downstream molecules are regulated in multiple forms of cardiovascular disease via Ca2+- and calpain-dependent proteolysis.


2012 ◽  
Vol 44 (2) ◽  
pp. 162-172 ◽  
Author(s):  
Ida G. Lunde ◽  
Jan Magnus Aronsen ◽  
Heidi Kvaløy ◽  
Eirik Qvigstad ◽  
Ivar Sjaastad ◽  
...  

Reversible protein O-GlcNAc modification has emerged as an essential intracellular signaling system in several tissues, including cardiovascular pathophysiology related to diabetes and acute ischemic stress. We tested the hypothesis that cardiac O-GlcNAc signaling is altered in chronic cardiac hypertrophy and failure of different etiologies. Global protein O-GlcNAcylation and the main enzymes regulating O-GlcNAc, O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and glutamine-fructose-6-phosphate amidotransferase (GFAT) were measured by immunoblot and/or real-time RT-PCR analyses of left ventricular tissue from aortic stenosis (AS) patients and rat models of hypertension, myocardial infarction (MI), and aortic banding (AB), with and without failure. We show here that global O-GlcNAcylation was increased by 65% in AS patients, by 47% in hypertensive rats, by 81 and 58% post-AB, and 37 and 60% post-MI in hypertrophic and failing hearts, respectively ( P < 0.05). Noticeably, protein O-GlcNAcylation patterns varied in hypertrophic vs. failing hearts, and the most extensive O-GlcNAcylation was observed on proteins of 20–100 kDa in size. OGT, OGA, and GFAT2 protein and/or mRNA levels were increased by pressure overload, while neither was regulated by myocardial infarction. Pharmacological inhibition of OGA decreased cardiac contractility in post-MI failing hearts, demonstrating a possible role of O-GlcNAcylation in development of chronic cardiac dysfunction. Our data support the novel concept that O-GlcNAc signaling is altered in various etiologies of cardiac hypertrophy and failure, including human aortic stenosis. This not only provides an exciting basis for discovery of new mechanisms underlying pathological cardiac remodeling but also implies protein O-GlcNAcylation as a possible new therapeutic target in heart failure.


2012 ◽  
Vol 302 (3) ◽  
pp. H770-H781 ◽  
Author(s):  
Jianliang Song ◽  
Erhe Gao ◽  
JuFang Wang ◽  
Xue-Qian Zhang ◽  
Tung O. Chan ◽  
...  

Expression and activity of cardiac Na+/Ca2+ exchanger (NCX1) are altered in many disease states. We engineered mice in which the phosphomimetic phospholemman S68E mutant (inhibits NCX1 but not Na+-K+-ATPase) was constitutively overexpressed in a cardiac-specific manner (conS68E). At 4–6 wk, conS68E mice exhibited severe bradycardia, ventricular arrhythmias, increased left ventricular (LV) mass, decreased cardiac output (CO), and ∼50% mortality compared with wild-type (WT) littermates. Protein levels of NCX1, calsequestrin, ryanodine receptor, and α1- and α2-subunits of Na+-K+-ATPase were similar, but sarco(endo)plasmic reticulum Ca2+-ATPase was lower, whereas L-type Ca2+ channels were higher in conS68E hearts. Resting membrane potential and action potential amplitude were similar, but action potential duration was dramatically prolonged in conS68E myocytes. Diastolic intracellular Ca2+ ([Ca2+]i) was higher, [Ca2+]i transient and maximal contraction amplitudes were lower, and half-time of [Ca2+]i transient decline was longer in conS68E myocytes. Intracellular Na+ reached maximum within 3 min after isoproterenol addition, followed by decline in WT but not in conS68E myocytes. Na+/Ca2+ exchange, L-type Ca2+, Na+-K+-ATPase, and depolarization-activated K+ currents were decreased in conS68E myocytes. At 22 wk, bradycardia and increased LV mass persisted in conS68E survivors. Despite comparable baseline CO, conS68E survivors at 22 wk exhibited decreased chronotropic, inotropic, and lusitropic responses to isoproterenol. We conclude that constitutive overexpression of S68E mutant was detrimental, both in terms of depressed cardiac function and increased arrhythmogenesis.


2019 ◽  
Vol 316 (6) ◽  
pp. H1366-H1377
Author(s):  
Yoshifumi Okawa ◽  
Atsushi Hoshino ◽  
Makoto Ariyoshi ◽  
Satoshi Kaimoto ◽  
Shuhei Tateishi ◽  
...  

Despite the advances in medical therapy, the morbidity and mortality of heart failure (HF) remain unacceptably high. HF results from reduced metabolism–contraction coupling efficiency, so the modulation of cardiac metabolism may be an effective strategy for therapeutic interventions. Tumor suppressor p53 (TP53) and its downstream target TP53-induced glycolysis and apoptosis regulator (TIGAR) are known to modulate cardiac metabolism and cell fate. To investigate TIGAR’s function in HF, we compared myocardial, metabolic, and functional outcomes between TIGAR knockout (TIGAR−/−) mice and wild-type (TIGAR+/+) mice subjected to chronic thoracic transverse aortic constriction (TAC), a pressure-overload HF model. In wild-type mice hearts, p53 and TIGAR increased markedly during HF development. Eight weeks after TAC surgery, the left ventricular (LV) dysfunction, fibrosis, oxidative damage, and myocyte apoptosis were significantly advanced in wild-type than in TIGAR−/− mouse heart. Further, myocardial high-energy phosphates in wild-type hearts were significantly decreased compared with those of TIGAR−/− mouse heart. Glucose oxidation and glycolysis rates were also reduced in isolated perfused wild-type hearts following TAC than those in TIGAR−/− hearts, which suggest that the upregulation of TIGAR in HF causes impaired myocardial energetics and function. The effects of TIGAR knockout on LV function were also replicated in tamoxifen (TAM)-inducible cardiac-specific TIGAR knockout mice ( TIGARflox/flox/Tg(Myh6-cre/Esr1) mice). The ablation of TIGAR during pressure-overload HF preserves myocardial function and energetics. Thus, cardiac TIGAR-targeted therapy to increase glucose metabolism will be a novel strategy for HF. NEW & NOTEWORTHY The present study is the first to demonstrate that TP53-induced glycolysis and apoptosis regulator (TIGAR) is upregulated in the myocardium during experimental heart failure (HF) in mice and that TIGAR knockout can preserve the heart function and myocardial energetics during HF. Reducing TIGAR to enhance myocardial glycolytic energy production is a promising therapeutic strategy for HF.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A Tirronen ◽  
N L Downes ◽  
J Huusko ◽  
J Laakkonen ◽  
S Yla-Herttuala

Abstract Introduction Concentric left ventricular hypertrophy (LVH) and diastolic dysfunction develops as an adaptive response to pressure overload. Eventually this may lead to decompensated hypertrophy characterised by interstitial fibrosis, contractile dysfunction as well as changes in metabolism and electrophysiology, consequentially triggering heart failure. The molecular mechanisms involved in cardiac remodelling are not fully understood but maladaptive angiogenesis could promote the transition from adaptive LVH to decompensated heart failure. Angiogenesis is mediated by vascular endothelial growth factors but their role in LVH has remained unresolved. Purpose In this study, we wanted to investigate whether vascular endothelial growth factor receptor 1 (VEGFR-1) signaling has a role in the progression of LVH and development of heart failure. Methods We used wild type littermate controls and domain specific knock out mouse lacking the intracellular VEGFR-1 tyrosine kinase domain (VEGFR-1 TK−/−) and induced pathological hypertrophy with subcutaneous angiotensin II infusion. We examined the cardiac function with echocardiography and acquired surface ECG signal during the development of LVH. Mice were followed up for 14 days before sacrification and sample collection. Cross-sectional cardiac samples were stained with Masson's trichrome to assess the level of fibrosis and immunostained for lectin to determine capillary area. Additionally, we performed a CD31 whole mount staining to visualise capillary 3D network. To analyse changes in gene expression levels, we performed RT qPCR measurements. Results VEGFR-1 TK deficiency led to increased mortality (33.3%) and lack of adaptive LVH. Whereas wild type mice responded to angiotensin II infusion with a significant increase in ejection fraction (55.5% to 69.9%) within the first 6 days, VEGFR-1 TK−/− mice displayed a 5.2% decrease and without adaptive thickening of the LV anterior wall. The most striking difference was seen in LV volume, where wild type mice displayed a 63.3% reduction but in VEGFR-1 TK−/− mice it remained unaltered after angiotensin II infusion. Histological analyses showed that VEGFR-1 TK−/− mice displayed significant cardiomyocyte hypertrophy combined with ventricular dilatation but without changes in fibrosis or angiogenesis. ECG analysis revealed that VEGFR-1 TK−/− mice exhibited widening of the QRS complex, similar to human LVH, and this was accompanied by increased ANP/BNP levels. Conclusions In this study, we show that the ablation of VEGFR-1 TK signaling has an unexpected role in pressure overload inducing mortality. VEGFR-1 TK−/− mice displayed dilated LVH and a protracted response to angiotensin II infusion, suggesting that VEGFR-1 signaling is required for the adaptive response and concentric hypertrophy of the myocardium.


2014 ◽  
Vol 307 (9) ◽  
pp. H1307-H1316 ◽  
Author(s):  
Georgios Karamanlidis ◽  
Lorena Garcia-Menendez ◽  
Stephen C. Kolwicz ◽  
Chi Fung Lee ◽  
Rong Tian

Mitochondrial dysfunction in animal models of heart failure is associated with downregulation of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α pathway. To test whether PGC-1α is an appropriate therapeutic target for increasing mitochondrial biogenesis and improving function in heart failure, we used a transgenic (TG) mouse model of moderate overexpression of PGC-1α (∼3-fold) in the heart. TG mice had small increases in citrate synthase activity and mitochondria size in the heart without alterations in myocardial energetics or cardiac function at baseline. In vivo dobutamine stress increased fractional shortening in wild-type mice, but this increase was attenuated in TG mice, whereas ex vivo isolated perfused TG hearts demonstrated normal functional and energetic response to high workload challenge. When subjected to pressure overload by transverse aortic constriction (TAC), TG mice displayed a significantly greater acute mortality for both male and female mice; however, long-term survival up to 8 wk was similar between the two groups. TG mice also showed a greater decrease in fractional shortening and a greater increase in left ventricular chamber dimension in response to TAC. Mitochondrial gene expression and citrate synthase activity were mildly increased in TG mice compared with wild-type mice, and this difference was also maintained after TAC. Our data suggest that a moderate level of PGC-1α overexpression in the heart compromises acute survival and does not improve cardiac function during chronic pressure overload in mice.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Suresh K Verma ◽  
Venkata N Garikipati ◽  
Prasanna Krishnamurthy ◽  
Cindy Benedict ◽  
Emily Nickoloff ◽  
...  

Background: Activated fibroblasts (myoFBs) play critical role in cardiac fibrosis, however, their origin in diseased heart remains uncertain. Recent studies suggest the contribution of bone marrow fibroblasts progenitor cells (BM-FPC) in pressure overload (PO)-induced cardiac fibrosis. Previously we have shown that interleukin-10 suppress PO-induced cardiac fibrosis, however, its role on inhibition of BM-FPC-mediated fibrosis is not known. Thus, we hypothesized that IL-10 inhibits PO-induced homing and transition of BM-FPC to myoFBs and therefore, attenuates cardiac fibrosis. Methods and Results: Cardiac fibrosis was induced in Wild-type (WT) and IL-10-knockout (KO) mice by transverse aortic constriction (TAC). TAC-induced left ventricular (LV) dysfunction and fibrosis were further exaggerated in KO mice. Systemic recombinant IL-10 administration markedly improved LV function and inhibited PO-induced cardiac fibrosis. PO-enhanced FPC (Prominin1 + cells) mobilization and homing in IL-10 KO mice compared to WT mice. Furthermore, bone marrow transplantation (BMT) experiment was performed wherein WT marrow from GFP mice was repopulated in IL-10 KO mice. FPC mobilization was significantly reduced in BMT-IL10 KO mice compared to IL-10 KO mice after TAC. Furthermore, immunofluorescence result in BMT mice showed that subsets of myoFBs are derived from BM after TAC. To identify the molecular mechanism, wild type BM-FPC were treated with TGFβ 2 with or without IL10. IL10 treatment significantly inhibits TGFβ 2 -induced FPC to myoFBs transition. As miRNAs are key players in cardiac fibrosis, next we performed fibrosis-associated miRNA profiling using miRNA array kit. TGFβ 2 -induced miR-208, 155, 21 and 145 expression was markedly inhibited by IL-10. Conclusion: Taken together, our findings suggest that both reduced homing to heart and transition of FPC to myofibroblasts mediate anti-fibrotic effect of IL10 during PO-induced heart failure. Ongoing investigations using molecular approaches will provide a better understanding on the mechanistic and therapeutic aspects of IL10 on PO-induced cardiac fibrosis and heart failure.


Sign in / Sign up

Export Citation Format

Share Document