Abstract 5492: Tetrahydrobiopterin (BH4) Improves Endothelial Cell Survival After Vascular Injury

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Ruth Rinze ◽  
Ziad A Ali ◽  
Gillian Douglas ◽  
Nicholas J Alp ◽  
Keith M Channon

Endothelial cell loss, survival and regeneration are important aspects of the response to vascular injury leading to neointimal hyperplasia and accelerated atherosclerosis. Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a key regulator of endothelial cell biology and has been shown to prevent endothelial cell apoptosis. The cofactor tetrahydrobiopterin (BH4) is essential for eNOS catalytic activity but its impact on endothelial cell survival and regeneration remains unclear. We investigated the effect of BH4 on endothelial cell survival and vascular remodelling using ApoE-KO mice with transgenic endothelial-targeted overexpression of GTP cyclohydrolase 1 (GCH), the rate limiting enzyme of BH4 synthesis, and with endothelial specific transgenic expression of the LacZ reporter gene. Using venous bypass grafts as an in vivo model of acute vascular injury, we observed that endothelial-specific augmentation of BH4 in GCH/ApoE-KO mice improved survival of vein graft-derived endothelial cells and reduced neointimal hyperplasia. To address the hypothesis that augmentation of BH4 increases the capacity of endothelial cells from GCH/ApoE-KO mice to survive vascular injury, we cultured primary lung endothelial cells from mice expressing the GCH transgene and wild type littermates. Endothelial cells, isolated by immunomagnetic beads, were positive for CD31, CD102 and Tie2. Protein levels of eNOS were not different between wild type and GCH mice. BH4 levels were selectively increased in pulmonary endothelial cells from GCH mice, > 10-fold, compared with a 3-fold increase in total lung tissue BH4. There was no difference in total lung endothelial cell content or amount of isolated cells between ApoE-KO and GCH/ApoE-KO mice, determined by Tie2-driven β-galactosidase activity. However, after 3 days of culture both total endothelial cell number and number of endothelial cell colonies in GCH/ApoE-KO were significantly increased (236% ± 47 p=0.028 and 195% ± 28 p=0.014 respectively, n=5) whereas mean colony size remained unchanged. These observations indicate an important role for BH4 in endothelial cell survival and endothelial regeneration, and identify BH4 as a potential therapeutic target in vascular injury states.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5461-5461
Author(s):  
Gerald W Prager ◽  
Judit Mihaly ◽  
Patrick Brunner ◽  
Christoph Zielinski ◽  
Bernd Binder

Abstract High uPA expressing tumors are associated with poor prognosis. While a direct effect on tumor cell behavior is described, uPA has especially been shown to mediate (tumor-) angiogenesis. Originally, the urokinase system has been implicated to assist the angiogenic process by it’s proteolytic activities. It is now becoming increasingly evident that uPA additionally elicits a whole array pro-angiogenic responses like differentiation, proliferation and cell migration, independent of its proteolytic activity by inducing intracellular signal transduction. Here we show that uPA induces upregulation of inhibitor of apoptosis proteins (IAPs), which protects endothelial cells against apoptosis. Thereby, uPA-induced endothelial cell survival is mediated by transcriptional upregulation the X-linked inhibitor of apoptosis protein (XIAP), because downregulation of XIAP by small interfering RNA techniques significantly reduces uPA mediated cell survival efficiencies of uPA in endothelial cells. The antiapoptotic activity of uPA was dependent on the presence of uPAR and LRP, but independent of the PI3kinase pathway, while VEGF-dependent antiapoptosis is mainly PI3kinase dependent. uPA-induced cell survival is dependent on the type of extracellular matrix on which cells are attached used indicating the involvement of integrin adhesion receptors. TherebyConsistently, uPA induces phosphorylation of the CDC42 downstream effector p21-activated kinase 1 (PAK1), which leads to IkappaB kinase alpha (IKKa) phosphorylation, a prerequisite for NFkappaB activation. As a consequence, p52/p50 but not p65 is are translocated into the nucleus. Blocking NFkappaB by using the specific NFkappaB inhibitor BAY 11–7082 or by adenoviral-mediated overexpression of its inhibitor, IkB, inhibits uPA-induced XIAP expression as well as uPA-induced cell survival. From these data we conclude that uPA, which is a main player in endothelial cell migration and invasion, provides an additional, PI3-kinase independent but NFkappaB dependent cell survival mechanism.


Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1243-1250 ◽  
Author(s):  
Benoit Favier ◽  
Antoine Alam ◽  
Pauline Barron ◽  
Jacques Bonnin ◽  
Patricia Laboudie ◽  
...  

Abstract Neuropilin 2 (NRP2) is a receptor for the vascular endothelial growth factor (VEGF) and the semaphorin (SEMA) families, 2 unrelated ligand families involved in angiogenesis and neuronal guidance. NRP2 specifically binds VEGF-A and VEGF-C, although the biological relevance of these interactions in human endothelial cells is poorly understood. In this study, we show that both VEGF-A and VEGF-C induce the interaction of NRP2 with VEGFR-2. This interaction correlated with an enhancement of the VEGFR-2 phosphorylation threshold. Overexpression of NRP2 in primary human endothelial cells promoted cell survival induced by VEGF-A and VEGF-C. In contrast, SEMA3F, another ligand for NRP2, was able to inhibit human endothelial cell survival and migration induced by VEGF-A and VEGF-C. Moreover, a siRNA targeting specifically NRP2 was a potent inhibitor of human endothelial cell migration induced by VEGF-A and VEGF-C. Thus, our data indicate that NRP2 acts as a coreceptor that enhances human endothelial cell biological responses induced by VEGF-A and VEGF-C.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gang Wang ◽  
Baihe Han ◽  
Ruoxi Zhang ◽  
Qi Liu ◽  
Xuedong Wang ◽  
...  

Hyperglycemia-induced endothelial cell senescence has been widely reported to be involved in the pathogenesis of type 2 diabetes mellitus‒accelerated atherosclerosis. Thus, understanding the underlying mechanisms and identifying potential therapeutic targets for endothelial cell senescence are valuable for attenuating atherosclerosis progression. C1q/tumor necrosis factor-related protein 9 (CTRP9), an emerging potential cardiokine, exerts a significant protective effect with respect to atherosclerosis, particularly in endothelial cells. However, the exact mechanism by which CTRP9 prevents endothelial cells from hyperglycemia-induced senescence remains unclear. This study aimed to investigate the effects of CTRP9 on hyperglycemia-induced endothelial cell senescence and atherosclerotic plaque formation in diabetic apolipoprotein E knockout (ApoE KO) mice. Human umbilical vein endothelial cells (HUVECs) were cultured in normal glucose (5.5 mM) and high glucose (40 mM) with or without recombinant human CTRP9 protein (3 μg/ml) for 48 h. Purified lentiviruses overexpressing CTRP9 (Lv-CTRP9) and control vectors containing green fluorescent protein (Lv-GFP) were injected via the tail vein into streptozotocin-induced diabetic ApoE KO mice. Results revealed that exposure of HUVECs to HG significantly increased the expression of Krüppel-like factor 4 (KLF4) and cyclin-dependent kinase inhibitor p21 (p21) and decreased that of telomerase reverse transcriptase (TERT). Treatment with recombinant human CTRP9 protein protected HUVECs from HG-induced premature senescence and dysfunction. CTRP9 promoted the phosphorylation of AMP-activated kinase (AMPK), attenuated the expression of KLF4 and p21 induced by HG, and increased the expression of TERT in HUVECs. Furthermore, in the background of AMPKα knockdown or KLF4 activation, the protective effects of CTRP9 were abolished. In-vivo experiments showed that the overexpression of CTRP9 inhibited vascular senescence and reduced atherosclerotic plaque formation in ApoE KO mice with diabetes. In conclusion, we demonstrate that KLF4 upregulation plays a crucial role in HG-induced endothelial senescence. This anti-atherosclerotic effect of CTRP9 may be partly attributed to the inhibition of HG-induced endothelial senescence through an AMPKα/KLF4-dependent mechanism, suggesting that CTRP9 could benefit further therapeutic approaches for type 2 diabetes mellitus‒accelerated atherosclerosis.


2004 ◽  
Vol 15 (6) ◽  
pp. 2834-2841 ◽  
Author(s):  
L. B. Pritzker ◽  
M. Scatena ◽  
C. M. Giachelli

Endothelial cell survival and antiapoptotic pathways, including those stimulated by extracellular matrix, are critical regulators of vasculogenesis, angiogenesis, endothelial repair, and shear-stress-induced endothelial activation. One of these pathways is mediated by αvβ3 integrin ligation, downstream activation of nuclear factor-κB, and subsequent up-regulation of osteoprotegerin (OPG). In this study, the mechanism by which OPG protects endothelial cells from death was examined. Serum-starved human microvascular endothelial cells (HMECs) plated on the αvβ3 ligand osteopontin were protected from cell death. Immunoprecipitation experiments indicated that OPG formed a complex with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in HMECs under these conditions. Furthermore, inhibitors of TRAIL, including recombinant soluble TRAIL receptors and a neutralizing antibody against TRAIL, blocked apoptosis of serum-starved HMECs plated on the nonintegrin attachment factor poly-d-lysine. Whereas TRAIL was unable to induce apoptosis in HMECs plated on osteopontin, the addition of recombinant TRAIL did increase the percentage of apoptotic HMECs plated on poly-d-lysine. This evidence indicates that OPG blocks endothelial cell apoptosis through binding TRAIL and preventing its interaction with death-inducing TRAIL-receptors


Blood ◽  
2009 ◽  
Vol 113 (6) ◽  
pp. 1383-1390 ◽  
Author(s):  
Gerald W. Prager ◽  
Judit Mihaly ◽  
Patrick M. Brunner ◽  
Yuri Koshelnick ◽  
Gunilla Hoyer-Hansen ◽  
...  

AbstractUrokinase-type plasminogen activator (uPA) additionally elicits a whole array of pro-angiogenic responses, such as differentiation, proliferation, and migration. In this study, we demonstrate that in endothelial cells uPA also protects against apoptosis by transcriptional up-regulation and partially by mRNA stabilization of inhibitor of apoptosis proteins, most prominently the X-linked inhibitor of apoptosis protein (XIAP). The antiapoptotic activity of uPA was dependent on its protease activity, the presence of uPA receptor (uPAR) and low-density lipoprotein receptor-related protein (LRP), but independent of the phosphatidylinositol 3 (PI3) kinase pathway, whereas vascular endothelial growth factor (VEGF)–induced antiapoptosis was PI3 kinase dependent. uPA-induced cell survival involved phosphorylation of p21-activated kinase 1 (Pak1) and the IκB kinase α that leads to nuclear factor κB (NF-κB) p52 activation. Indeed, blocking NF-κB activation by using specific NF-κB inhibitors abolished uPA-induced cell survival as it blocked uPA-induced XIAP up-regulation. Furthermore, down-regulating XIAP expression by small interfering RNA (siRNA) significantly reduced uPA-dependent endothelial cell survival. This mechanism is also important for VEGF-induced antiapoptosis because VEGF-dependent up-regulation of XIAP was found defective in uPA−/− endothelial cells. This led us to conclude that uPA is part of a novel NF-κB–dependent cell survival pathway.


2002 ◽  
Vol 88 (11) ◽  
pp. 834-842 ◽  
Author(s):  
Giuseppe Pintucci ◽  
Scott Froum ◽  
Jared Pinnell ◽  
Paolo Mignatti ◽  
Shahin Rafii ◽  
...  

SummaryIn addition to their role in primary hemostasis, platelets serve to support and maintain the vascular endothelium. Platelets contain numerous growth factors including the potent angiogenic inducers VEGF and FGF-2. To characterize the function of these two plateletassociated growth factors, the effects of the addition of purified platelets to cultured endothelial cells were examined. The survival and proliferation of endothelial cells were markedly stimulated (2-3-fold and 5-15-fold respectively) by the addition of gel-filtered platelets. Acetylsalicylic acid-treated or lyophilized fixed-platelets were ineffective in supporting endothelial cell proliferation. In Transwell assays, the stimulatory effect of platelets on endothelial cells was preserved, consistent with an effect mediated by secreted factors. The combined inhibition of VEGF and FGF-2 by neutralizing antibodies, in contrast to inhibition of either alone, abrogated both platelet-induced endothelial cell survival and proliferation. FGF-2 isoforms were detected in platelet lysates, as well as in the releasates of agonist-stimulated platelets. Megakaryocytes generated by ex vivo expansion of hematopoietic progenitor cells with kit ligand and thrombopoietin were analyzed for expression of FGF-2. Punctate cytoplasmic staining but no nuclear staining was observed by immunocytochemistry consistent with possible localization of the growth factor to cytoplasmic granules. The addition of platelets to cultured endothelial cells activated extracellular signal-regulated kinase (ERK) in a dose and time-dependent manner. This effect was abrogated by both anti-FGF-2 and anti-VEGF antibody. Since FGF-2 and VEGF are potent angiogenic factors and known endothelial cell survival factors, their release by platelets provides a plausible mechanism for the platelet support of vascular endothelium.


2007 ◽  
Vol 120 (3) ◽  
pp. 492-501 ◽  
Author(s):  
N. Kang-Decker ◽  
S. Cao ◽  
S. Chatterjee ◽  
J. Yao ◽  
L. J. Egan ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Wenting Chen ◽  
Caoxin Huang ◽  
Chen Yang ◽  
Xilin Ge ◽  
Wenfang Huang ◽  
...  

Danggui Sini decoction (DSD) is a traditional Chinese decoction, which is wildly applied and showed to be effective in ameliorating ischemia-related symptoms. However, the mechanisms of DSD action in ischemic damage remain to be fully clarified. Pancreatic islet endothelial cells are pivotal constituent of islet microvasculature, with high vulnerability to hypoxic injuries. Here, using MST1 cell, a pancreatic islet endothelial cell-line, as a model, we investigated the effects of DSD on hypoxia-stimulated endothelial cell lesions and its underlying mechanisms. We found that DSD-Containing Serum (DSD-CS), collected from DSD-treated rats, could efficiently protect MST1 survival and proliferation from Cobalt chloride (CoCl2) induced damage, including cell viability, proliferation, and tube formation. Furthermore, DSD-CS restored the activity of PI3K/Akt/eNOS signaling inhibited by CoCl2 in MST1 cells. The protective effect of DSD-CS could be blocked by the specific PI3K/Akt/eNOS inhibitor LY294002, suggesting that DSD-CS protection of MST1 cell survival from hypoxia was mediated by PI3K/Akt/eNOS pathway. In conclusion, DSD treatment protected MST1 survival from hypoxic injuries via PI3K/Akt/eNOS pathway, indicating its role in protecting microvascular endothelial cells.


Blood ◽  
2004 ◽  
Vol 103 (11) ◽  
pp. 4150-4156 ◽  
Author(s):  
Ulrike Fiedler ◽  
Marion Scharpfenecker ◽  
Stefanie Koidl ◽  
Anja Hegen ◽  
Verena Grunow ◽  
...  

Abstract The angiopoietins Ang-1 and Ang-2 have been identified as ligands with opposing functions of the receptor tyrosine kinase Tie-2 regulating endothelial cell survival and vascular maturation. Ang-1 acts in a paracrine agonistic manner, whereas Ang-2 appears to act primarily as an autocrine antagonistic regulator. To shed further light on the complexity of autocrine/paracrine agonistic/antagonistic functions of the angiopoietin/Tie-2 system, we have studied Ang-2 synthesis and secretion in different populations of wild-type and retrovirally Ang-2–transduced endothelial cells. Endogenous and overexpressed endothelial cell Ang-2 is expressed in a characteristic granular pattern indicative of a cytoplasmic storage granule. Light and electron microscopic double staining revealed Ang-2 colocalization with von Willebrand factor, identifying Ang-2 as a Weibel-Palade body molecule. Costaining with P-selectin showed that storage of Ang-2 and P-selectin in Weibel-Palade bodies is mutually exclusive. Stored Ang-2 has a long half-life of more than 18 hours and can be secreted within minutes of stimulation (eg, by phorbol 12-myristate 13-acetate [PMA], thrombin, and histamine). Collectively, the identification of Ang-2 as a stored, rapidly available molecule in endothelial cells strongly suggests functions of the angiopoietin/Tie-2 system beyond the established roles during angiogenesis likely to be involved in rapid vascular homeostatic reactions such as inflammation and coagulation.


Sign in / Sign up

Export Citation Format

Share Document