Abstract 10246: Hydroxychloroquine Pretreatment Reduces Myocardial Ischemia-Reperfusion Injury: Role of Cardiac Extracellular-Signal-Regulated Kinase 5 and Autophagy

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Feiyan Yang ◽  
Chang Yin ◽  
Lei Xi ◽  
Rakesh C Kukreja

Background: Hydroxychloroquine (HCQ) is an antimalarial drug, which is also widely used to treat chronic rheumatologic diseases. Since HCQ was reported to inhibit cell autophagy and to activate extracellular-signal-regulated kinase 5 (ERK5) in vascular endothelial cells, we designed the current study to determine the effects of HCQ on cardiac ischemia-reperfusion (I-R) injury and post-I-R expression of ERK5 and autophagy marker proteins. Methods: Adult C57BL/6J mice of both genders were pretreated with HCQ (50 mg/kg, i.p.) 1 hour prior to isolation of the hearts, which were subjected to 30 min of no-flow global ischemia followed by 60 min of reperfusion in Langendorff mode. Ventricular function was continuously assessed and myocardial infarct size was determined at the end of I-R. Heart samples were collected following normoxic perfusion (no-ischemic controls), I-R, or I-R with HCQ for assessing ERK5 and autophagy-related proteins with Western blots. Results: HCQ pretreatment reduced infarct size significantly in the female hearts (P<0.05) as compared with the male hearts (Fig. A). Post-I-R cardiac function was better in HCQ-treated males (Fig. B). I-R resulted in a robust increase in total ERK5 (Fig. C) and phosphorylated ERK5 (Thr218/Tyr220) in both genders, which was abolished in HCQ-treated groups. Conversely, either I-R or HCQ did not affect the post-I-R cardiac expression of autophagy-related proteins (e.g., Atg5, Beclin-1, LC3II/LC3I ratio), except Beclin-1 phosphorylation was inhibited in HCQ-treated male hearts, but not females (Fig. D). Conclusions: Acute HCQ pretreatment affords cardioprotection against I-R injury in both genders. Interestingly, cardioprotective effects of HCQ are associated with a strong inhibitory effect on the induction of ERK5 following I-R in the heart, indicating a novel molecular mechanism underlying the HCQ-induced cardioprotection. However, the cardioprotective dose of HCQ has no major impact on cardiac autophagy.

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Yun Wu ◽  
Yao Lu ◽  
Eric R Gross

Toxic reactive aldehydes are formed during ischemia-reperfusion. The ion channel transient receptor potential ankryin 1 (TRPA1) is irreversibly modified by reactive aldehydes which can cause calcium influx and cell death. Here we tested whether topically applied creams containing a reversible TRPA1 agonist could reduce myocardial infarct size. Male Sprague-Dawley rats 8-10 weeks age were subjected to an in vivo myocardial ischemia-reperfusion model of 30 minutes of left anterior descending (LAD) coronary artery ischemia followed by 2 hours reperfusion. Prior to ischemia, rats were untreated or had 1g of cream applied to the abdomen. The creams tested were IcyHot, Bengay, Tiger Balm, or preparation H (Fig. 1A). Hearts were negatively stained for the area at risk and the infarct size was determined by using TTC staining (Fig. 1B). A subset of rodents prior to receiving IcyHot also received an intravenous bolus of the TRPA1 antagonist TCS-5861528 (1mg/kg) or AP-18 (1mg/kg). Interestingly, both IcyHot and Bengay reduced myocardial infarct size compared to untreated rodents (Fig. 1C and 1D IcyHot: 41±3%*, Bengay: 50±2%* versus control 62±1%, n=6/group, *P<0.001). Both preparation H and Tiger Balm failed to reduce myocardial infarct size (Tiger Balm: 63±2%, preparation H 59±2%). Giving a TRPA1 antagonist prior to IcyHot also blocked the reduction in infarct size. Our additional data also indicates the methyl salicylate (mint) in IcyHot and Bengay is the agent that limits myocardial infarct size. Since IcyHot and Bengay are safely used by humans, targeting TRPA1 by using products such as these could be quickly translatable and widely used to reduce ischemia-reperfusion injury.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Anindita das ◽  
Lei Xi ◽  
Fadi N Salloum ◽  
Yuan J Rao ◽  
Rakesh C Kukreja

Background: Sildenafil (SIL), a potent inhibitor of phosphodiesterase-5 induces powerful protection against myocardial ischemia-reperfusion (I-R) injury through activation of protein kinase G (PKG). However, the downstream targets of PKG in SIL-induced cardioprotection remain unclear. We hypothesized that PKG-dependent activation of survival kinase, ERK may play a critical role in SIL-induced cardioprotection in mice. Methods & Results: Ventricular myocytes were isolated from adult male ICR mice and exposed to 40 min of simulated ischemia (SI) with/without 1 hr pre-incubation of SIL (1 μM). Myocyte necrosis and apoptosis were determined after 1 hr or 18 hrs of reoxygenation (RO) using trypan blue or TUNEL assay, respectively. Pretreatment with SIL protected cardiomyocytes after SI-RO (necrosis 18.5±0.5% and apoptosis 6.6±0.7%; n=4, p<0.001) as compared with controls (necrosis 42.1±1.8% and apoptosis 23.3±0.9%). Co-incubation of PD98059 (20 μM), a selective ERK1/2 inhibitor blocked both anti-necrotic and anti-apoptotic protection in cardiomyocytes. Furthermore, intra-coronary infusion of SIL (1 μM) in Langendorff isolated mouse hearts 10 min prior to zero-flow global I (20 min) and R (30 min) significantly reduced myocardial infarct size (from 29.4±2.4% to 16.0±3.0%; p<0.05, n=6). Co-treatment of PD98059 abrogated SIL-induced protection (33.0±5.9; n=4). To evaluate the role of ERK1/2 in delayed cardioprotection, mice were treated with saline or SIL (0.7 mg/kg i.p.) 24 hours before global I-R in Langendorff mode. PD98059 (1 mg/kg) was administered (i.p.) 30 min before the treatment of SIL. Infarct size was reduced from 27.6±3.3% in saline-treated controls to 6.9±1.2% in SIL-treated mice (P<0.05, n=6). The delayed protective effect of SIL was also abolished by PD98059 (22.5±2.3%). Western Blots revealed that SIL significantly increased phosphorylation of ERK1/2 which was blocked by PKG inhibitor, KT5823 in the heart and adult myocytes. Selective knockdown of PKG in cardiomyocytes with short hairpin RNA of PKG also blocked the phosphorylation of ERK1/2. Conclusion: SIL-induced cardioprotection involves the activation and phosphorylation of ERK which appear to be intimately linked with a PKG-dependent survival pathway. This research has received full or partial funding support from the American Heart Association, AHA Mid-Atlantic Affiliate (Maryland, North Carolina, South Carolina, Virginia & Washington, DC).


1998 ◽  
Vol 275 (5) ◽  
pp. H1865-H1872 ◽  
Author(s):  
Anthony J. Palazzo ◽  
Steven P. Jones ◽  
Donald C. Anderson ◽  
D. Neil Granger ◽  
David J. Lefer

We investigated in vivo coronary P-selectin expression and its pathophysiological consequences in a murine model of myocardial ischemia-reperfusion (MI/R) using wild-type and P-selectin deficient (−/−) mice. Coronary P-selectin expression [μg monoclonal antibody (MAb)/g tissue] was measured using a radiolabeled MAb method after 30 min of myocardial ischemia and 20 min of reperfusion. P-selectin expression in wild-type mice was significantly ( P< 0.01) elevated in the ischemic zone (0.070 ± 0.010) compared with the nonischemic zone (0.037 ± 0.008). Myocardial P-selectin expression was nearly undetectable in P-selectin −/− mice after MI/R. Furthermore, myocardial infarct size (% of area at risk) after 30 min of myocardial ischemia and 120 min of reperfusion was 42.5 ± 4.4 in wild-type mice and 24.4 ± 4.0 in P-selectin −/− mice ( P < 0.05). In additional experiments of prolonged myocardial ischemia (60 min) and reperfusion (120 min), myocardial infarct size was similar in P-selectin −/− mice and wild-type mice. Our results clearly demonstrate the involvement of coronary P-selectin in the development of myocardial infarction after MI/R.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yuri Dmitriev ◽  
Sarkis Minasian ◽  
Anna Dracheva ◽  
Andrey Karpov ◽  
Svetlana Chefu ◽  
...  

Background: Reduction of irreversible myocardial ischemia-reperfusion injury (IRI) remains important. One of the promising strategies aimed at myocardial IRI alleviation is modulation of programmed cell death (PCD) pathways. PCD mode displaying morphological characteristics of necrosis, and amenable to pharmacological manipulation is referred to as necroptosis. Necroptosis inhibitor necrostatin-1 has been shown to exert cardio- and neuroprotective effects. In the present work, the effect of necrostatin-7 (Nec-7) on myocardial injury in the rat model of permanent coronary occlusion was studied. Methods: Male Wistar rats (n = 19) were anesthetized with pentobarbital. The animals were subjected to permanent coronary occlusion (PCO) and intraperitoneal (i.p.) Nec-7 administration 1 h prior to PCO at a dose of 14.5 mg/kg in dimethyl sulfoxide (DMSO) or DMSO alone at a dose of 3.1 g/kg. Control rats were treated with saline. Three weeks after PCO, serum levels of NT-proBNP were measured, and histological outcomes were assessed. The infarct size (IS, %) and infarct length (IL, mm) were analyzed morphometrically. Results: DMSO caused significant reduction in serum NT-proBNP level vs. Control (0.3 ± 0.19 vs. 0.5 ± 0.22 ng/ml, p = 0.001), while Nec-7 further decreased NT-proBNP level in comparison with DMSO (0.2 ± 0.14 ng/ml, p = 0.008 vs. DMSO). Compared with Control, DMSO reduced adverse left ventricular remodeling, as evidenced by reduction in IS (16.0 ± 2.92 and 12.9 ± 1.72%, p = 0.015) and IL (6.2 ± 0.89 and 3.8 ± 0.35 mm, p = 0.008). Nec-7 treatment resulted in additional reduction of both IS and IL vs. DMSO group (9.0 ± 4.91 % and 2.9 ± 1.62 mm, respectively; p = 0.013 and p = 0.011 vs. DMSO, respectively). Conclusion: Nec-7 has cardioprotective properties, reducing myocardial wall stress and myocardial remodeling in the rat model of myocardial infarction.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3631-3631 ◽  
Author(s):  
Li Zhu ◽  
Timothy J. Stalker ◽  
Tao Wang ◽  
Hong Jiang ◽  
Atushi Kumanogoh ◽  
...  

Abstract Contact-dependent signaling between platelets helps to promote thrombus growth and stability. One mechanism for contact-dependent signaling involves the binding of cell surface ligands to corresponding receptors on the surface of adjacent cells. In our efforts to identify novel participants in this process, we have recently reported that platelets express on their surface the semaphorin family member, sema4D, and its two known receptors, CD72 and plexin-B1 (Zhu, et al, PNAS, 2007). We have also shown that although their initial tail bleeding time is normal, platelets from sema4D(−/−) mice have a defect in collagen-induced signaling and platelet aggregation in vitro. In the present studies, we used matched sema4D(−/−) and wild type (WT) mice to examine the consequences of impaired sema4D signaling in models of platelet function in vivo. In the first model, irradiated Rose Bengal dye was used to produce an arteriolar injury in an exteriorized cremaster muscle. Platelets were identified with a fluorescent CD41 antibody and detected in real time using digital microscopy. The results showed that thrombus formation occurred in all of the mice that were tested, but while stable occlusion was observed in approximately half of the control mice, none of the sema4D(−/−) mice developed stable occlusions during the period of observation (p&lt;0.02). Similarly, when a laser was used to produce a focal injury in cremaster muscle arterioles, both the initial rate of platelet accumulation and the peak extent of accumulation were approximately 50% lower in the sema4D(−/−) mice than in the matched controls. To test the contribution of sema4D to platelet responses in a larger artery, the right common carotid was injured by transient exposure to FeCl3 and changes in flow were measured using a Doppler probe. The results showed that the time to occlusion was 35% greater in the sema4D(−/−) mice than in controls (p&lt;0.02). Furthermore, stable occlusion occurred in only 9 of 16 (56%) sema4D(−/−) mice Vs. 7 of 9 (78%) WT mice. Finally, myocardial infarct size was measured in an ischemia/reperfusion injury model 48 hrs after transient ligation of the left anterior descending coronary artery. Although infarction occurred in all cases, infarct volume was 56% smaller in the sema4D(−/−) mice than the matched controls (p&lt;0.01). In summary, these results show that there is a substantial impairment of platelet function in vivo in mice that lack sema4D. This impairment was observed in both arterioles and arteries using several different methods to evoke platelet activation. When combined with our earlier observations, the results show that signaling by sema4D and its receptors provides a novel mechanism to promote thrombus growth and stability.


2007 ◽  
Vol 293 (4) ◽  
pp. H2462-H2471 ◽  
Author(s):  
Susheel Gundewar ◽  
John W. Calvert ◽  
John W. Elrod ◽  
David J. Lefer

N, N, N-Trimethylsphingosine chloride (TMS), a stable N-methylated synthetic sphingolipid analog, has been shown to modulate protein kinase C (PKC) activity and exert a number of important biological effects, including inhibition of tumor cell growth and metastasis, inhibition of leukocyte migration and respiratory burst, and inhibition of platelet aggregation. We hypothesized that TMS would be cytoprotective in clinically relevant in vivo murine models of myocardial and hepatic ischemia-reperfusion (I/R) injury. Wild-type, obese ( ob/ ob), and diabetic ( db/ db) mice were subjected to 30 min of left coronary artery occlusion followed by 24 h of reperfusion in the myocardial I/R model. In additional studies, mice were subjected to 45 min of hepatic artery occlusion followed by 5 h of reperfusion. TMS was administered intravenously at the onset of ischemia. Myocardial infarct size, cardiac function, and serum liver enzymes were measured to assess the extent of tissue injury. TMS attenuated myocardial infarct size by 66% in the wild type and by 36% in the ob/ ob mice. Furthermore, TMS reduced serum alanine transaminase levels by 43% in wild-type mice. These benefits did not extend to the ob/ ob mice following hepatic I/R or to the db/ db mice following both myocardial and hepatic I/R. A likely mechanism is the failure of TMS to inhibit PKC-δ translocation in the diseased heart. These data suggest that although TMS is cytoprotective following I/R in normal animals, the cytoprotective actions of TMS are largely attenuated in obese and diabetic animals.


2006 ◽  
Vol 290 (2) ◽  
pp. H500-H505 ◽  
Author(s):  
Kasem Nithipatikom ◽  
Michael P. Endsley ◽  
Jeannine M. Moore ◽  
Marilyn A. Isbell ◽  
John R. Falck ◽  
...  

Cytochrome P-450 (CYP) ω-hydroxylases and their arachidonic acid (AA) metabolite, 20-hydroxyeicosatetraenoic acid (20-HETE), produce a detrimental effect on ischemia-reperfusion injury in canine hearts, and the inhibition of CYP ω-hydroxylases markedly reduces myocardial infarct size expressed as a percentage of the area at risk (IS/AAR, %). In this study, we demonstrated that a specific CYP ω-hydroxylase inhibitor, N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), markedly reduced 20-HETE production during ischemia-reperfusion and reduced myocardial infarct size compared with control [19.5 ± 1.0% (control), 9.6 ± 1.5% (0.40 mg/kg DDMS), 4.0 ± 2.0% (0.81 mg/kg DDMS), P < 0.01]. In addition, 20-hydroxyeicosa-6( Z),15( Z)-dienoic acid (20-HEDE, a putative 20-HETE antagonist) significantly reduced myocardial infarct size from control [10.3 ± 1.3% (0.032 mg/kg 20-HEDE) and 5.9 ± 1.9% (0.064 mg/kg 20-HEDE), P < 0.05]. We further demonstrated that one 5-min period of ischemic preconditioning (IPC) reduced infarct size to a similar extent as that observed with the high doses of DDMS and 20-HEDE, and the higher dose of DDMS given simultaneously with IPC augmented the infarct size reduction [9.9 ± 2.8% (IPC) to 2.5 ± 1.4% (0.81 mg/kg DDMS), P < 0.05] to a greater degree than that observed with either treatment alone. These results suggest an important negative role for endogenous CYP ω-hydroxylases and their product, 20-HETE, to exacerbate myocardial injury in canine myocardium. Furthermore, for the first time, this study demonstrates that the effect of IPC and the inhibition of CYP ω-hydroxylase synthesis (DDMS) or its actions (20-HEDE) may have additive effects in protecting the canine heart from ischemia-reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document