Abstract 17348: Necrostatin 7 Limits Myocardial Infarct Size and Reduces Cardiac Remodeling After Permanent Coronary Occlusion in Rats

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yuri Dmitriev ◽  
Sarkis Minasian ◽  
Anna Dracheva ◽  
Andrey Karpov ◽  
Svetlana Chefu ◽  
...  

Background: Reduction of irreversible myocardial ischemia-reperfusion injury (IRI) remains important. One of the promising strategies aimed at myocardial IRI alleviation is modulation of programmed cell death (PCD) pathways. PCD mode displaying morphological characteristics of necrosis, and amenable to pharmacological manipulation is referred to as necroptosis. Necroptosis inhibitor necrostatin-1 has been shown to exert cardio- and neuroprotective effects. In the present work, the effect of necrostatin-7 (Nec-7) on myocardial injury in the rat model of permanent coronary occlusion was studied. Methods: Male Wistar rats (n = 19) were anesthetized with pentobarbital. The animals were subjected to permanent coronary occlusion (PCO) and intraperitoneal (i.p.) Nec-7 administration 1 h prior to PCO at a dose of 14.5 mg/kg in dimethyl sulfoxide (DMSO) or DMSO alone at a dose of 3.1 g/kg. Control rats were treated with saline. Three weeks after PCO, serum levels of NT-proBNP were measured, and histological outcomes were assessed. The infarct size (IS, %) and infarct length (IL, mm) were analyzed morphometrically. Results: DMSO caused significant reduction in serum NT-proBNP level vs. Control (0.3 ± 0.19 vs. 0.5 ± 0.22 ng/ml, p = 0.001), while Nec-7 further decreased NT-proBNP level in comparison with DMSO (0.2 ± 0.14 ng/ml, p = 0.008 vs. DMSO). Compared with Control, DMSO reduced adverse left ventricular remodeling, as evidenced by reduction in IS (16.0 ± 2.92 and 12.9 ± 1.72%, p = 0.015) and IL (6.2 ± 0.89 and 3.8 ± 0.35 mm, p = 0.008). Nec-7 treatment resulted in additional reduction of both IS and IL vs. DMSO group (9.0 ± 4.91 % and 2.9 ± 1.62 mm, respectively; p = 0.013 and p = 0.011 vs. DMSO, respectively). Conclusion: Nec-7 has cardioprotective properties, reducing myocardial wall stress and myocardial remodeling in the rat model of myocardial infarction.

2010 ◽  
Vol 55 (25) ◽  
pp. 2869-2876 ◽  
Author(s):  
Katrina Go Yamazaki ◽  
Pam R. Taub ◽  
Maraliz Barraza-Hidalgo ◽  
Maria M. Rivas ◽  
Alexander C. Zambon ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4401
Author(s):  
David Schumacher ◽  
Adelina Curaj ◽  
Mareike Staudt ◽  
Franziska Cordes ◽  
Andreea R. Dumitraşcu ◽  
...  

Phosphatidylserines are known to sustain skeletal muscle activity during intense activity or hypoxic conditions, as well as preserve neurocognitive function in older patients. Our previous studies pointed out a potential cardioprotective role of phosphatidylserine in heart ischemia. Therefore, we investigated the effects of phosphatidylserine oral supplementation in a mouse model of acute myocardial infarction (AMI). We found out that phosphatidylserine increases, significantly, the cardiomyocyte survival by 50% in an acute model of myocardial ischemia-reperfusion. Similar, phosphatidylserine reduced significantly the infarcted size by 30% and improved heart function by 25% in a chronic model of AMI. The main responsible mechanism seems to be up-regulation of protein kinase C epsilon (PKC-ε), the main player of cardio-protection during pre-conditioning. Interestingly, if the phosphatidylserine supplementation is started before induction of AMI, but not after, it selectively inhibits neutrophil’s activation, such as Interleukin 1 beta (IL-1β) expression, without affecting the healing and fibrosis. Thus, phosphatidylserine supplementation may represent a simple way to activate a pre-conditioning mechanism and may be a promising novel strategy to reduce infarct size following AMI and to prevent myocardial injury during myocardial infarction or cardiac surgery. Due to the minimal adverse effects, further investigation in large animals or in human are soon possible to establish the exact role of phosphatidylserine in cardiac diseases.


2021 ◽  
Vol 8 (9) ◽  
pp. 100
Author(s):  
Pablo Vidal-Calés ◽  
Pedro L. Cepas-Guillén ◽  
Salvatore Brugaletta ◽  
Manel Sabaté

Myocardial infarction remains the principal cause of death in Europe. In patients with ST-segment-elevation myocardial infarction (STEMI), a promptly revascularization with primary percutaneous intervention (PCI) has transformed prognosis in the last decades. However, despite increasing successful PCI procedures, mortality has remained unchanged in recent years. Also, due to an unsatisfactory reperfusion, some patients have significant myocardial damage and suffer left ventricular adverse remodeling with reduced function—all that resulting in the onset of heart failure with all its inherent clinical and socioeconomic burden. As a consequence of longer ischemic times, distal thrombotic embolization, ischemia-reperfusion injury and microvascular dysfunction, the resultant myocardial infarct size is the major prognostic determinant in STEMI patients. The improved understanding of all the pathophysiology underlying these events has derived to the development of several novel therapies aiming to reduce infarct size and to improve clinical outcomes in these patients. In this article, based on the mechanisms involved in myocardial infarction prognosis, we review the new interventional strategies beyond stenting that may solve the suboptimal results that STEMI patients still experience.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Yun Wu ◽  
Yao Lu ◽  
Eric R Gross

Toxic reactive aldehydes are formed during ischemia-reperfusion. The ion channel transient receptor potential ankryin 1 (TRPA1) is irreversibly modified by reactive aldehydes which can cause calcium influx and cell death. Here we tested whether topically applied creams containing a reversible TRPA1 agonist could reduce myocardial infarct size. Male Sprague-Dawley rats 8-10 weeks age were subjected to an in vivo myocardial ischemia-reperfusion model of 30 minutes of left anterior descending (LAD) coronary artery ischemia followed by 2 hours reperfusion. Prior to ischemia, rats were untreated or had 1g of cream applied to the abdomen. The creams tested were IcyHot, Bengay, Tiger Balm, or preparation H (Fig. 1A). Hearts were negatively stained for the area at risk and the infarct size was determined by using TTC staining (Fig. 1B). A subset of rodents prior to receiving IcyHot also received an intravenous bolus of the TRPA1 antagonist TCS-5861528 (1mg/kg) or AP-18 (1mg/kg). Interestingly, both IcyHot and Bengay reduced myocardial infarct size compared to untreated rodents (Fig. 1C and 1D IcyHot: 41±3%*, Bengay: 50±2%* versus control 62±1%, n=6/group, *P<0.001). Both preparation H and Tiger Balm failed to reduce myocardial infarct size (Tiger Balm: 63±2%, preparation H 59±2%). Giving a TRPA1 antagonist prior to IcyHot also blocked the reduction in infarct size. Our additional data also indicates the methyl salicylate (mint) in IcyHot and Bengay is the agent that limits myocardial infarct size. Since IcyHot and Bengay are safely used by humans, targeting TRPA1 by using products such as these could be quickly translatable and widely used to reduce ischemia-reperfusion injury.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Feiyan Yang ◽  
Chang Yin ◽  
Lei Xi ◽  
Rakesh C Kukreja

Background: Hydroxychloroquine (HCQ) is an antimalarial drug, which is also widely used to treat chronic rheumatologic diseases. Since HCQ was reported to inhibit cell autophagy and to activate extracellular-signal-regulated kinase 5 (ERK5) in vascular endothelial cells, we designed the current study to determine the effects of HCQ on cardiac ischemia-reperfusion (I-R) injury and post-I-R expression of ERK5 and autophagy marker proteins. Methods: Adult C57BL/6J mice of both genders were pretreated with HCQ (50 mg/kg, i.p.) 1 hour prior to isolation of the hearts, which were subjected to 30 min of no-flow global ischemia followed by 60 min of reperfusion in Langendorff mode. Ventricular function was continuously assessed and myocardial infarct size was determined at the end of I-R. Heart samples were collected following normoxic perfusion (no-ischemic controls), I-R, or I-R with HCQ for assessing ERK5 and autophagy-related proteins with Western blots. Results: HCQ pretreatment reduced infarct size significantly in the female hearts (P<0.05) as compared with the male hearts (Fig. A). Post-I-R cardiac function was better in HCQ-treated males (Fig. B). I-R resulted in a robust increase in total ERK5 (Fig. C) and phosphorylated ERK5 (Thr218/Tyr220) in both genders, which was abolished in HCQ-treated groups. Conversely, either I-R or HCQ did not affect the post-I-R cardiac expression of autophagy-related proteins (e.g., Atg5, Beclin-1, LC3II/LC3I ratio), except Beclin-1 phosphorylation was inhibited in HCQ-treated male hearts, but not females (Fig. D). Conclusions: Acute HCQ pretreatment affords cardioprotection against I-R injury in both genders. Interestingly, cardioprotective effects of HCQ are associated with a strong inhibitory effect on the induction of ERK5 following I-R in the heart, indicating a novel molecular mechanism underlying the HCQ-induced cardioprotection. However, the cardioprotective dose of HCQ has no major impact on cardiac autophagy.


1998 ◽  
Vol 275 (5) ◽  
pp. H1865-H1872 ◽  
Author(s):  
Anthony J. Palazzo ◽  
Steven P. Jones ◽  
Donald C. Anderson ◽  
D. Neil Granger ◽  
David J. Lefer

We investigated in vivo coronary P-selectin expression and its pathophysiological consequences in a murine model of myocardial ischemia-reperfusion (MI/R) using wild-type and P-selectin deficient (−/−) mice. Coronary P-selectin expression [μg monoclonal antibody (MAb)/g tissue] was measured using a radiolabeled MAb method after 30 min of myocardial ischemia and 20 min of reperfusion. P-selectin expression in wild-type mice was significantly ( P< 0.01) elevated in the ischemic zone (0.070 ± 0.010) compared with the nonischemic zone (0.037 ± 0.008). Myocardial P-selectin expression was nearly undetectable in P-selectin −/− mice after MI/R. Furthermore, myocardial infarct size (% of area at risk) after 30 min of myocardial ischemia and 120 min of reperfusion was 42.5 ± 4.4 in wild-type mice and 24.4 ± 4.0 in P-selectin −/− mice ( P < 0.05). In additional experiments of prolonged myocardial ischemia (60 min) and reperfusion (120 min), myocardial infarct size was similar in P-selectin −/− mice and wild-type mice. Our results clearly demonstrate the involvement of coronary P-selectin in the development of myocardial infarction after MI/R.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Navin K Kapur ◽  
Vikram Paruchuri ◽  
Xiaoying Qiao ◽  
Kevin Morine ◽  
Wajih Syed ◽  
...  

Management of an acute myocardial infarction (AMI) focuses on restoring oxygen supply to limit myocardial damage, however ischemia-reperfusion injury (IRI) remains a major determinant of mortality in AMI. No studies have targeted initially reducing left ventricular stroke work (LVSW) to limit IRI in AMI. The Impella CP axial-flow pump reduces LVSW. We tested the hypothesis that first reducing myocardial work and delaying coronary reperfusion reduces infarct size by activating cardioprotective signaling pathways. Methods: AMI was induced by occlusion of the left anterior descending artery (LAD) via angioplasty for 90 minutes in 50kg male Yorkshire swine (n=5/group). In Group 1, the LAD was reperfused for 120 minutes. In Group 2, after 90 minutes of ischemia the Impella CP device was activated and the LAD left occluded for an additional 60 minutes (150 minutes of LAD occlusion total), followed by 120 minutes of reperfusion. The Impella CP was active throughout reperfusion. Western blot analysis quantified myocardial kinase activity. Results: Compared to Group 1, Group 2 had a reduced LVSW, LV end-diastolic volume and end-diastolic pressure after reperfusion [Fig A]. Group 2 showed increased myocardial phosphorylation of cardioprotective kinases: AKT, ERK, GSK3β and STAT-3 [Fig B]. Compared to Group 1, the percent myocardial infarct size normalized to the area at risk (AAR) was reduced in Group 2 (73+13% vs 42+15%, p=0.02). Conclusion: We report the potential benefit of primarily unloading the heart and delaying coronary reperfusion to salvage myocardium in AMI. This is the first report to examine the impact of the Impella CP on cardioprotective signaling in the heart.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3631-3631 ◽  
Author(s):  
Li Zhu ◽  
Timothy J. Stalker ◽  
Tao Wang ◽  
Hong Jiang ◽  
Atushi Kumanogoh ◽  
...  

Abstract Contact-dependent signaling between platelets helps to promote thrombus growth and stability. One mechanism for contact-dependent signaling involves the binding of cell surface ligands to corresponding receptors on the surface of adjacent cells. In our efforts to identify novel participants in this process, we have recently reported that platelets express on their surface the semaphorin family member, sema4D, and its two known receptors, CD72 and plexin-B1 (Zhu, et al, PNAS, 2007). We have also shown that although their initial tail bleeding time is normal, platelets from sema4D(−/−) mice have a defect in collagen-induced signaling and platelet aggregation in vitro. In the present studies, we used matched sema4D(−/−) and wild type (WT) mice to examine the consequences of impaired sema4D signaling in models of platelet function in vivo. In the first model, irradiated Rose Bengal dye was used to produce an arteriolar injury in an exteriorized cremaster muscle. Platelets were identified with a fluorescent CD41 antibody and detected in real time using digital microscopy. The results showed that thrombus formation occurred in all of the mice that were tested, but while stable occlusion was observed in approximately half of the control mice, none of the sema4D(−/−) mice developed stable occlusions during the period of observation (p&lt;0.02). Similarly, when a laser was used to produce a focal injury in cremaster muscle arterioles, both the initial rate of platelet accumulation and the peak extent of accumulation were approximately 50% lower in the sema4D(−/−) mice than in the matched controls. To test the contribution of sema4D to platelet responses in a larger artery, the right common carotid was injured by transient exposure to FeCl3 and changes in flow were measured using a Doppler probe. The results showed that the time to occlusion was 35% greater in the sema4D(−/−) mice than in controls (p&lt;0.02). Furthermore, stable occlusion occurred in only 9 of 16 (56%) sema4D(−/−) mice Vs. 7 of 9 (78%) WT mice. Finally, myocardial infarct size was measured in an ischemia/reperfusion injury model 48 hrs after transient ligation of the left anterior descending coronary artery. Although infarction occurred in all cases, infarct volume was 56% smaller in the sema4D(−/−) mice than the matched controls (p&lt;0.01). In summary, these results show that there is a substantial impairment of platelet function in vivo in mice that lack sema4D. This impairment was observed in both arterioles and arteries using several different methods to evoke platelet activation. When combined with our earlier observations, the results show that signaling by sema4D and its receptors provides a novel mechanism to promote thrombus growth and stability.


Sign in / Sign up

Export Citation Format

Share Document