Abstract 17426: Pulmonary Vein Isolation ‘Rewires’ Electrical Communications to Enhance Small-world Network Topology During Atrial Fibrillation
Recent evidence suggests that pulmonary vein isolation (PVI) may perturb the electrophysiological substrate for maintenance of atrial fibrillation (AF). Our previous work indicates that information theory metrics can quantify electrical communications during arrhythmia. We hypothesized that PVI ‘rewires’ the electrical communication network during AF such that the topology exhibits higher levels of small-world network properties, with higher clustering coefficient and lower path length, than would be expected by chance. Thirteen consecutive patients (n=6 with prior PVI and n=7 without) underwent AF ablation using a 64-electrode basket catheter in the left atrium. Multielectrode recording was performed during AF for 60 seconds, followed by PVI. Mutual information was calculated from the time series between each pair of electrodes using the Kraskov-Stögbauer-Grassberger estimator. The all-to-all mutual information matrix (64x64; Figure, upper panels) was thresholded by the median and standard deviations of mutual information to build a binary adjacency matrix for electrical communication networks. The properties of small-world network ( swn ; ‘small-world-ness’) were quantified by the ratio of the observed average clustering coefficient to that of a random network over the ratio of the observed average path length to that of a random network. swn was expressed in normal Z standard deviation units. As the binarizing threshold increased, the Z-score of swn decreased (Figure, lower panel). However, the Z-score at each threshold value was consistently higher with prior PVI than those without (p<0.05). In conclusion, electrical communication network during AF with prior PVI is associated with higher levels of small-world network properties than those without. This finding supports the concept that PVI perturbs the underlying substrate. In addition, swn of electrical communication network may be a promising metric to quantify substrate modification.