Abstract 15736: The Sphk1/s1p Signaling Axis Regulates Pulmonary Vascular Inflammation by Activating Nf-kb and Nlrp3 Inflammasome

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Yang Bai ◽  
Alan de Brito Carneiro ◽  
Angelia Lockett ◽  
Marta T Gomes ◽  
Nicole Jones ◽  
...  

Rationale: Pulmonary vascular inflammation is activated during the development of pulmonary arterial hypertension (PAH). Sphingosine kinase 1 (Sphk1) catalyzes the formation of sphingosine-1-phosphate (S1P), which has been shown to promote inflammation by activating nuclear factor kappa B (NF-κB) and the nucleotide oligomerization domain-like receptor 3 (NLRP3) inflammasome. However, the impact of S1P on NLRP3 inflammasome activation in PAH is unknown. Here, we tested whether Sphk1/S1P regulates pulmonary vascular inflammation via activating NF-κB and the NLRP3 inflammasome. Methods: Human pulmonary arterial smooth muscle cells (PASMCs) and endothelial cells (PAECs) were treated with S1P or were exposed to hypoxia. Sphk1 plasmid or siRNA was used to increase and decrease Sphk1/S1P levels, respectively. Activation of NF-κB signaling and the NLRP3 inflammasome (increased NLRP3, cleaved caspase-1, IL-1β and IL-18) were detected by western blots or real-time PCR. ELISA was used to measure secretion of IL-1β. Results: S1P treatment led to a biphasic phosphorylation and degradation of IκBα accompanied by increased phosphorylation and expression of NF-κB in PASMCs. S1P treatment also resulted in increased expression of inflammasome mediators, NLRP3 and cleaved caspase-1, enhanced intracellular expression of IL-1b and IL-18, and higher levels of secreted IL-1β compared to controls. Notably, over expression of Sphk1 in PASMCs led to increased NF-κB and NLRP3 expression, whereas suppression of Sphk1 expression reduced NLRP3, cleavage of IL-1β and IL-18 expression and phosphorylation of NF-κB. Similar phenomena with respect to inflammasome activation and IL-1β secretion was observed in PASMCs exposed to hypoxia. Increased NF-κB and NLRP3 activation, cleavage of caspase-1 were also observed in S1P treated PAECs, however no changes in IL-1β secretion levels were detected. Conclusion: These findings suggest that S1P induces pulmonary vascular pro-inflammatory signaling via activation of NF-κB and the NLRP3 inflammasome, and that the S1P/Sphk1 signaling axis may be involved in this context. Activation of the inflammasome may be an important mechanism underlying PAH pathogenesis, targeting of which may be exploited for the treatment of PAH.

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1706
Author(s):  
Chi-Ho Lee ◽  
Ji Woong Choi

The activation of NLRP3 inflammasome is a key factor for various inflammatory diseases. Here, we provide experimental evidence supporting the regulatory role of sphingosine-1-phosphate (S1P) in NLRP3 inflammasome activation in mouse bone-marrow-derived macrophages (BMDMs), along with the S1P receptor subtype involved and underlying regulatory mechanisms. During the priming stage, S1P induced NLRP3 upregulation in BMDMs only when primed with lipopolysaccharide (LPS). In this event, S1P2, but not S1P1, was involved based on the attenuated NLRP3 upregulation with JTE013 (S1P2 antagonist) or S1P2 knockdown. During the activation stage, S1P induced NLRP3 inflammasome activation in LPS-primed BMDMs via caspase-1 activation, interleukin 1β maturation, apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, and IL-1β secretion. Such NLRP3 inflammasome activation was blocked by either pharmacological inhibition or genetic knockdown of S1P2. NF-κB, PI3K/Akt, and ERK1/2 were identified as effector pathways underlying S1P/S1P2 signaling in the regulation of NLRP3 upregulation in LPS-primed BMDMs. Further, reactive oxygen species (ROS) production was dependent on the S1P/S1P2 signaling axis in these cells, and the ROS generated regulate NLRP3 inflammasome activation, but not NLRP3 priming. Collectively, our findings suggest that S1P promotes NLRP3 upregulation and NLRP3 inflammasome activation in LPS-primed BMDMs via S1P2 and subsequent effector pathways.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Nathanne S Ferreira ◽  
Thiago Bruder-Nascimento ◽  
Camila A Pereira ◽  
Camila Z Zanotto ◽  
Douglas S Prado ◽  
...  

Diabetic patients and animal models of type 2 diabetes (DM2) display increased plasma aldosterone (aldo) levels. Aldo induces vascular inflammation and endothelial dysfunction. NOD-like receptors, which are pattern recognition receptors involved in a variety of host innate immune responses, promote vascular inflammation. We hypothesized that aldo via mineralocorticoid receptors (MR) activates the inflammasome platform in the vasculature of DM2 mice. Control (db/+) and diabetic (db/db) mice were treated with vehicle or spironolactone (spiro - MR antagonist, 50 mg/Kg/day). Mesenteric resistance arteries (MA) from db/db mice exhibited reduced acetylcholine (ACh) dilation, which was reversed by spiro [Emax (% of relaxation): db/+: 78.5±4.1; db/db: 40.5±6.4; db/+spiro: 77.0±3.8; db/db+spiro: 62.8±5.9 n=3-6 p<0.05]. Spiro treatment reduced caspase-1 and mature IL-1β content in MA from db/db mice. Spiro also reduced caspase-1 activity in macrophages from peritoneal lavage of db/db mice [% of activity: db/+: 33.9±2.5; db/db: 51.8±7.4; db/+spiro: 31.1±1.9; db/db+spiro: 34.8±3.8 n=4-7, p<0.05]. In vitro, aldo increased mature IL-1β in vascular smooth muscle cells (VSMC) (cont: 0.9±0.01 ; LPS+Nigericine: 6.1±2.1 ; Aldo 4h: 9.7±2.6; LPS+Aldo 4h: 12.8±1.9 n=3-5, p<0.05). To determine whether aldo in vivo directly activates NLRP3/inflammasome in the vasculature and whether NLRP3 activation contributes to aldo-induced vascular injury, aldo was infused (600 ug/Kg/day for 14 days) in wild type (WT) and NLRP3 knockout mice ( NLRP3-/- ) after bone marrow transplantation from WT donor. The groups were constituted: WT->WT, WT->WT+aldo and WT-> NLRP3 -/-+aldo. NLRP3 -/- mice were protected against aldo-induced endothelial dysfunction [Emax: WT: 89.3±2.9; WT+aldo: 39.8±1.8; NLRP3-/- +aldo: 87.7±4.2, p<0.05]. Aldo treatment leaded to endothelial dysfunction in WT ->WT mice, but WT-> NLRP3 -/- mice were protected from aldo-induced endothelial dysfunction [Emax: WT->WT: 95.1±3.1; WT->WT+aldo: 57.1±4.7; WT->NLRP3-/-+aldo: 85.3±3.1 p<0.05]. These results suggest that NLRP3/inflammasome in the vasculature plays a crucial role on aldo/MR-induced vascular damage and on DM2-associated vascular dysfunction. Financial Support: FAPESP, CAPES, CNPq.


2021 ◽  
pp. 1-17
Author(s):  
Wanyi Huang ◽  
Fan Zeng ◽  
Yebo Gu ◽  
Muzhou Jiang ◽  
Xinwen Zhang ◽  
...  

Background: Studies have reported that synaptic failure occurs before the Alzheimer’s disease (AD) onset. The systemic Porphyromonas gingivalis (P. gingivalis) infection is involved in memory decline. We previously showed that leptomeningeal cells, covering the brain, activate glial cells by releasing IL-1β in response to systemic inflammation. Objective: In the present study, we focused on the impact of leptomeningeal cells on neurons during systemic P. gingivalis infection. Methods: The responses of leptomeningeal cells and cortical neurons to systemic P. gingivalis infection were examined in 15-month-old mice. The mechanism of IL-1β production by P. gingivalis infected leptomeningeal cells was examined, and primary cortical neurons were treated with P. gingivalis infected leptomeningeal cells condition medium (Pg LCM). Results: Systemic P. gingivalis infection increased the expression of IL-1β in leptomeninges and reduced the synaptophysin (SYP) expression in leptomeninges proximity cortex in mice. Leptomeningeal cells phagocytosed P. gingivalis resulting in lysosomal rupture and Cathepsin B (CatB) leakage. Leaked CatB mediated NLRP3 inflammasome activation inducing IL-1β secretion in leptomeningeal cells. Pg LCM decreased the expression of synaptic molecules, including SYP, which was inhibited by an IL-1 receptor antagonist pre-treatment. Conclusion: These observations demonstrate that P. gingivalis infection is involved in synaptic failure by inducing CatB/NLRP3 inflammasome-mediated IL-1β production in leptomeningeal cells. The periodontal bacteria-induced synaptic damage may accelerate the onset and cognitive decline of AD.


2013 ◽  
Vol 81 (8) ◽  
pp. 2997-3008 ◽  
Author(s):  
Wei Li ◽  
Barry P. Katz ◽  
Margaret E. Bauer ◽  
Stanley M. Spinola

ABSTRACTRecognition of microbial infection by certain intracellular pattern recognition receptors leads to the formation of a multiprotein complex termed the inflammasome. Inflammasome assembly activates caspase-1 and leads to cleavage and secretion of the proinflammatory cytokines interleukin-1 beta (IL-1β) and IL-18, which help control many bacterial pathogens. However, excessive inflammation mediated by inflammasome activation can also contribute to immunopathology. Here, we investigated whetherHaemophilus ducreyi, a Gram-negative bacterium that causes the genital ulcer disease chancroid, activates inflammasomes in experimentally infected human skin and in monocyte-derived macrophages (MDM). AlthoughH. ducreyiis predominantly extracellular during human infection, several inflammasome-related components were transcriptionally upregulated inH. ducreyi-infected skin. Infection of MDM with live, but not heat-killed,H. ducreyiinduced caspase-1- and caspase-5-dependent processing and secretion of IL-1β. Blockage ofH. ducreyiuptake by cytochalasin D significantly reduced the amount of secreted IL-1β. Knocking down the expression of the inflammasome components NLRP3 and ASC abolished IL-1β production. Consistent with NLRP3-dependent inflammasome activation, blocking ATP signaling, K+efflux, cathepsin B activity, and lysosomal acidification all inhibited IL-1β secretion. However, inhibition of the production and function of reactive oxygen species did not decrease IL-1β production. Polarization of macrophages to classically activated M1 or alternatively activated M2 cells abrogated IL-1β secretion elicited byH. ducreyi. Our study data indicate thatH. ducreyiinduces NLRP3 inflammasome activation via multiple mechanisms and suggest that the heterogeneity of macrophages within human lesions may modulate inflammasome activation during human infection.


2019 ◽  
Vol 147 ◽  
pp. 104348 ◽  
Author(s):  
Jiasi Wu ◽  
Yu Luo ◽  
Qing Jiang ◽  
Sheng Li ◽  
Wenge Huang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Pengxiao Chen ◽  
Qi Bai ◽  
Yanting Wu ◽  
Qiongzhen Zeng ◽  
Xiaowei Song ◽  
...  

Artemisia argyi H. Lév. and Vaniot is a traditional medical herb that has been used for a long time in China and other Asian counties. Essential oil is the main active fraction of Artemisia argyi H. Lév. and Vaniot, and its anti-inflammatory potential has been observed in vitro and in vivo. Here, we found that the essential oil of Artemisia argyi H. Lév. and Vaniot (EOAA) inhibited monosodium urate (MSU)- and nigericin-induced NLRP3 inflammasome activation. EOAA suppressed caspase-1 and IL-1β processing and pyroptosis. NF-κB p65 phosphorylation and translocation were also inhibited. In addition, EOAA suppressed nigericin-induced NLRP3 inflammasome activation without blocking ASC oligomerization, suggesting that it may inhibit NLRP3 inflammasome activation by preventing caspase-1 processing. Our study thus indicates that EOAA inhibits NLRP3 inflammasome activation and has therapeutic potential against NLRP3-driven diseases.


2021 ◽  
Vol 5 (5) ◽  
pp. 1523-1534
Author(s):  
Johan Courjon ◽  
Océane Dufies ◽  
Alexandre Robert ◽  
Laurent Bailly ◽  
Cédric Torre ◽  
...  

Abstract Dysregulated immune response is the key factor leading to unfavorable coronavirus disease 2019 (COVID-19) outcome. Depending on the pathogen-associated molecular pattern, the NLRP3 inflammasome can play a crucial role during innate immunity activation. To date, studies describing the NLRP3 response during severe acute respiratory syndrome coronavirus 2 infection in patients are lacking. We prospectively monitored caspase-1 activation levels in peripheral myeloid cells from healthy donors and patients with mild to critical COVID-19. The caspase-1 activation potential in response to NLRP3 inflammasome stimulation was opposed between nonclassical monocytes and CD66b+CD16dim granulocytes in severe and critical COVID-19 patients. Unexpectedly, the CD66b+CD16dim granulocytes had decreased nigericin-triggered caspase-1 activation potential associated with an increased percentage of NLRP3 inflammasome impaired immature neutrophils and a loss of eosinophils in the blood. In patients who recovered from COVID-19, nigericin-triggered caspase-1 activation potential in CD66b+CD16dim cells was restored and the proportion of immature neutrophils was similar to control. Here, we reveal that NLRP3 inflammasome activation potential differs among myeloid cells and could be used as a biomarker of a COVID-19 patient’s evolution. This assay could be a useful tool to predict patient outcome. This trial was registered at www.clinicaltrials.gov as #NCT04385017.


2021 ◽  
Author(s):  
Lili Li ◽  
Xiaohui Zhu ◽  
Xingxing Chai ◽  
Xiaoyu Chen ◽  
Xiaohua Su ◽  
...  

Abstract Helicobacter pylori ( H. pylori ) is a major pathogenic factor for the development of gastric diseases including chronic gastritis and gastric cancer. Callicarpa nudiflora (CN), an air-dried leaves extract of Callicarpa nudiflora Hook. & Arn., has been found to exhibit a broad-spectrum antibacterial effect. In our study, we extracted the active ingredient from air-dried leaves of Callicarpa nudiflora, detected the effect of CN against H. pylori -infected GES-1 cells in vitro , and elucidated the underlying mechanism. GES-1 cells were cocultured with HPSS1 at MOI = 100:1 and treated with different concentrations of CN. Results indicated that CN not only significantly decreased cellular lactate dehydrogenase leakage, but also markedly attenuated H. pylori -induced cell apoptosis and ROS production in GSE-1 cells, therefore protecting gastric epithelial cells against injuries caused by H. pylori . CN also inhibited the secretions of inflammatory factors, such as tumor necrosis factor-α (TNF-α), IL-1β, IL-6 and IL-8. Furthermore, CN remarkably decreased the expression levels of NLRP3, PYCARD, active Caspase-1. In conclusion, CN exhibited highly efficient protective effect against H. pylori -induced gastritis and cell damage; Mechanismly, CN suppressed H. pylori -triggered inflammatory response and pyroptosis through depressing ROS production and NLRP3 inflammasome activation via ROS/NLRP3/IL-1β signaling axis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hong-Su Park ◽  
Yao Lu ◽  
Kannupriya Pandey ◽  
GuanQun Liu ◽  
Yan Zhou

Nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome-mediated interleukin-1 beta (IL-1β) production is one of the crucial responses in innate immunity upon infection with viruses including influenza A virus (IAV) and is modulated by both viral and host cellular proteins. Among host proteins involved, we identified tripartite motif-containing protein 25 (TRIM25) as a positive regulator of porcine NLRP3 inflammasome-mediated IL-1β production. TRIM25 achieved this function by enhancing the pro-caspase-1 interaction with apoptosis-associated speck-like protein containing caspase recruitment domain (ASC). The N-terminal RING domain, particularly residues predicted to be critical for the E3 ligase activity of TRIM25, was responsible for this enhancement. However, non-structural protein 1 (NS1) C-terminus of 2009 pandemic IAV interfered with this action by interacting with TRIM25, leading to diminished association between pro-caspase-1 and ASC. These findings demonstrate that TRIM25 promotes the IL-1β signaling, while it is repressed by IAV NS1 protein, revealing additional antagonism of the NS1 against host pro-inflammatory responses.


Sign in / Sign up

Export Citation Format

Share Document