Abstract 17211: Targeting Mitogen-Activated Kinase Alleviates Free Heme-Induced Endothelial Barrier Dysfunction and Vascular Leakage in Lungs

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Joel James ◽  
Mathews Valuparampil Varghes ◽  
Marina zemskova ◽  
Olga Rafikova ◽  
Ruslan Rafikov

Introduction: Several studies confirm that free heme in circulation due to hemolysis causes endothelial barrier dysfunction. We recently demonstrated that hemolysis-induced vascular leakage with barrier dysfunction was a contributory factor to the development of pulmonary hypertension (PH). However, the precise molecular mechanisms involved in the pathology of heme induced barrier disruption still remains to be elucidated. Hypothesis: Previous studies by us showed that free heme activated the p38/MAPK pathway. Therefore, we hypothesized that targeting mitogen-activated protein kinase kinase 3 (MKK3) a key regulator of this pathway would alleviate heme induced vascular leakage. Methods: Barrier dysfunction in human micro-vascular endothelial cells (HLMVEC) was monitored using noninvasive electrical impedance and immunostaining. We used an MKK3 knockout mouse model to assess the efficacy of targeting the p38/MAPK pathway. Results: We found a rapid drop in the HLMVEC barrier integrity with heme, in a dose dependent manner (p<0.05). Investigating the barrier proteins showed that heme significantly affected the tight junction proteins, zona occludens-1, claudin1, and claudin5 (p<0.05). We also found the p38MAPK/HSP27 pathway, involved in regulating the endothelial cytoskeleton remodeling, to be significantly altered with heme treatment, both in the HLMVEC and mice (p<0.05). However, heme treated mice showed no significant change in E-selectin, ICAM1 and VCAM1, indicating that the primary rapid target of heme was the p38/MAPK pathway and not the inflammatory pathways. Finally, injecting mice with heme-FITC-dextran and then following its release into the lungs demonstrated that the MKK3 KO significantly prevented heme induced vascular leakage (p<0.05). Conclusion: We demonstrate that heme induces a rapid barrier dysfunction by disruption of endothelial barrier proteins via the p38/MAPK pathway. Also, knocking out MKK3, a crucial regulator of the p38/MAPK pathway significantly decreased heme induced vascular leakage, a contributory factor to PH. Taken together, our results show that targeting the MKK3/p38MAPK axis represents a decisive treatment strategy in alleviating heme induced barrier dysfunction in cardiovascular diseases.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ting He ◽  
Liping Zhao ◽  
Dongxia Zhang ◽  
Qiong Zhang ◽  
Jiezhi Jia ◽  
...  

Endothelial barrier dysfunction, which is a serious problem that occurs in various inflammatory conditions, permits extravasation of serum components into the surrounding tissues, leading to edema formation and organ failure. Pigment epithelium-derived factor (PEDF), which is a major endogenous antagonist, has been implicated in diverse biological process, but its role in endothelial barrier dysfunction has not been defined. To assess the role of PEDF in the vasculature, we evaluated the effects of exogenous PEDF using human umbilical vein endothelial cells (HUVECs)in vitro. Our results demonstrated that exogenous PEDF activated p38/MAPK signalling pathway in a dose- and time-dependent manner and induced vascular hyperpermeability as measured by the markedly increased FITC-dextran leakage and the decreased transendothelial electrical resistance (TER) across the monolayer cells, which was accompanied by microtubules (MTs) disassembly and F-actin rearrangement. However, the aforementioned alterations can be arrested by the application of low concentration of p38/MAPK inhibitor SB203580. These results reveal a novel role for PEDF as a potential vasoactive substance in inducing hyperpermeability. Furthermore, our results suggest that PEDF and p38/MAPK may serve as therapeutic targets for maintaining vascular integrity.


Blood ◽  
2020 ◽  
Vol 136 (6) ◽  
pp. 749-754
Author(s):  
Joel James ◽  
Anup Srivastava ◽  
Mathews Valuparampil Varghese ◽  
Cody A. Eccles ◽  
Marina Zemskova ◽  
...  

Abstract Several studies demonstrate that hemolysis and free heme in circulation cause endothelial barrier dysfunction and are associated with severe pathological conditions such as acute respiratory distress syndrome, acute chest syndrome, and sepsis. However, the precise molecular mechanisms involved in the pathology of heme-induced barrier disruption remain to be elucidated. In this study, we investigated the role of free heme in the endothelial barrier integrity and mechanisms of heme-mediated intracellular signaling of human lung microvascular endothelial cells (HLMVECs). Heme, in a dose-dependent manner, induced a rapid drop in the endothelial barrier integrity of HLMVECs. An investigation into barrier proteins revealed that heme primarily affected the tight junction proteins zona occludens-1, claudin-1, and claudin-5, which were significantly reduced after heme exposure. The p38MAPK/HSP27 pathway, involved in the regulation of endothelial cytoskeleton remodeling, was also significantly altered after heme treatment, both in HLMVECs and mice. By using a knockout (KO) mouse for MKK3, a key regulator of the p38MAPK pathway, we showed that this KO effectively decreased heme-induced endothelial barrier dysfunction. Taken together, our results indicate that targeting the p38MAPK pathway may represent a crucial treatment strategy in alleviating hemolytic diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yu-hao Teng ◽  
Jie-pin Li ◽  
Shen-lin Liu ◽  
Xi Zou ◽  
Liang-hua Fang ◽  
...  

Raddeanin A (RA) is an extractive fromAnemone raddeana Regel, a traditional Chinese medicine. The aim of this study is to assess the efficacy of RA against human gastric cancer (GC) cells (SGC-7901) and explore its mechanism. MTT assay showed that RA inhibition of proliferation of SGC-7901 cells increased in a dose-dependent manner. Flow cytometry analysis and Hoechst 33258 staining showed that RA induced apoptosis on SGC-7901 cells. Meanwhile, it induced autophagy. Western blotting analysis showed that the RA induces apoptosis and autophagy by activating p38 MAPK pathway and inhibiting mTOR pathway. Further studies showed that autophagy inhibition could protect from RA-induced apoptosis in SGC-7901 cells. In conclusion, RA can induce SGC-7901 cell apoptosis and autophagy by activating p38 MAPK pathway. And autophagy can protect SGC-7901 cells from apoptosis induced by RA.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Otgonchimeg Rentsendorj ◽  
Laura E. Servinsky ◽  
Larissa A. Shimoda ◽  
Aigul Moldobaeva ◽  
Tamara Mirzapoiazova ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1489
Author(s):  
Ruben M. L. Colunga Biancatelli ◽  
Pavel Solopov ◽  
Betsy Gregory ◽  
John D. Catravas

Exposure to hydrochloric acid (HCl) leads acutely to asthma-like symptoms, acute respiratory distress syndrome (ARDS), including compromised alveolo-capillary barrier, and respiratory failure. To better understand the direct effects of HCl on pulmonary endothelial function, we studied the characteristics of HCl-induced endothelial barrier dysfunction in primary cultures of human lung microvascular endothelial cells (HLMVEC), defined the involved molecular pathways, and tested the potentially beneficial effects of Heat Shock Protein 90 (HSP90) inhibitors. HCl impaired barrier function in a time- and concentration-dependent manner and was associated with activation of Protein Kinase B (AKT), Ras homolog family member A (RhoA) and myosin light chain 2 (MLC2), as well as loss of plasmalemmal VE-cadherin, rearrangement of cortical actin, and appearance of inter-endothelial gaps. Pre-treatment or post-treatment of HLMVEC with AUY-922, a third-generation HSP90 inhibitor, prevented and restored HCl-induced endothelial barrier dysfunction. AUY-922 increased the expression of HSP70 and inhibited the activation (phosphorylation) of extracellular-signal regulated kinase (ERK) and AKT. AUY-922 also prevented the HCl-induced activation of RhoA and MLC2 and the internalization of plasmalemmal VE-cadherin. We conclude that, by increasing the expression of cytoprotective proteins, interfering with actomyosin contractility, and enhancing the expression of junction proteins, inhibition of HSP90 may represent a useful approach for the management of HCl-induced endothelial dysfunction and acute lung injury.


2018 ◽  
Author(s):  
Xiaosheng Wu ◽  
Yanli Li ◽  
Xin Liu ◽  
Siyu Cao ◽  
Susan M. Harrington ◽  
...  

ABSTRACTDevelopment of resistance to chemotherapy and immunotherapy is a major obstacle in extending the survival of patients with cancer. Although several molecular mechanisms have been identified that can contribute to chemoresistance, the role of immune checkpoint molecules in tumor chemoresistance remains underestimated. It has been recently observed that overexpression of B7-H1(PD-L1) confers chemoresistance in human cancers, however the underlying mechanisms are unclear. Here we show that the development of chemoresistance depends on the increased activation of ERK pathway in tumor cells overexpressing B7-H1. Conversely, B7-H1 deficiency renders tumor cells susceptible to chemotherapy in a cell-context dependent manner through activation of the p38 MAPK pathway. B7-H1 in tumor cells associates with the catalytic subunit of a DNA-dependent serine / threonine protein kinase (DNA-PKcs). DNA-PKcs is required for the activation of ERK or p38 MAPK in tumors expressing B7-H1, but not in B7-H1 negative or B7-H1 deficient tumors. Ligation of B7-H1 by anti-B7-H1 monoclonal antibody (H1A) increased the sensitivity of human triple negative breast tumor cells to cisplatin therapy in vivo. Our results suggest that B7-H1(PD-L1) expression in cancer cells modifies their chemosensitivity towards certain drugs and targeting B7-H1 intracellular signaling pathway is a new way to overcome cancer chemoresistance.


2014 ◽  
Vol 171 (21) ◽  
pp. 4927-4940 ◽  
Author(s):  
Rongfeng Wu ◽  
Weidong Zhou ◽  
Shuo Chen ◽  
Yan Shi ◽  
Lin Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document