scholarly journals Lipoxin A4suppresses the development of endometriosis in an ALX receptor-dependent manner via the p38 MAPK pathway

2014 ◽  
Vol 171 (21) ◽  
pp. 4927-4940 ◽  
Author(s):  
Rongfeng Wu ◽  
Weidong Zhou ◽  
Shuo Chen ◽  
Yan Shi ◽  
Lin Su ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yu-hao Teng ◽  
Jie-pin Li ◽  
Shen-lin Liu ◽  
Xi Zou ◽  
Liang-hua Fang ◽  
...  

Raddeanin A (RA) is an extractive fromAnemone raddeana Regel, a traditional Chinese medicine. The aim of this study is to assess the efficacy of RA against human gastric cancer (GC) cells (SGC-7901) and explore its mechanism. MTT assay showed that RA inhibition of proliferation of SGC-7901 cells increased in a dose-dependent manner. Flow cytometry analysis and Hoechst 33258 staining showed that RA induced apoptosis on SGC-7901 cells. Meanwhile, it induced autophagy. Western blotting analysis showed that the RA induces apoptosis and autophagy by activating p38 MAPK pathway and inhibiting mTOR pathway. Further studies showed that autophagy inhibition could protect from RA-induced apoptosis in SGC-7901 cells. In conclusion, RA can induce SGC-7901 cell apoptosis and autophagy by activating p38 MAPK pathway. And autophagy can protect SGC-7901 cells from apoptosis induced by RA.


2018 ◽  
Author(s):  
Xiaosheng Wu ◽  
Yanli Li ◽  
Xin Liu ◽  
Siyu Cao ◽  
Susan M. Harrington ◽  
...  

ABSTRACTDevelopment of resistance to chemotherapy and immunotherapy is a major obstacle in extending the survival of patients with cancer. Although several molecular mechanisms have been identified that can contribute to chemoresistance, the role of immune checkpoint molecules in tumor chemoresistance remains underestimated. It has been recently observed that overexpression of B7-H1(PD-L1) confers chemoresistance in human cancers, however the underlying mechanisms are unclear. Here we show that the development of chemoresistance depends on the increased activation of ERK pathway in tumor cells overexpressing B7-H1. Conversely, B7-H1 deficiency renders tumor cells susceptible to chemotherapy in a cell-context dependent manner through activation of the p38 MAPK pathway. B7-H1 in tumor cells associates with the catalytic subunit of a DNA-dependent serine / threonine protein kinase (DNA-PKcs). DNA-PKcs is required for the activation of ERK or p38 MAPK in tumors expressing B7-H1, but not in B7-H1 negative or B7-H1 deficient tumors. Ligation of B7-H1 by anti-B7-H1 monoclonal antibody (H1A) increased the sensitivity of human triple negative breast tumor cells to cisplatin therapy in vivo. Our results suggest that B7-H1(PD-L1) expression in cancer cells modifies their chemosensitivity towards certain drugs and targeting B7-H1 intracellular signaling pathway is a new way to overcome cancer chemoresistance.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Joel James ◽  
Mathews Valuparampil Varghes ◽  
Marina zemskova ◽  
Olga Rafikova ◽  
Ruslan Rafikov

Introduction: Several studies confirm that free heme in circulation due to hemolysis causes endothelial barrier dysfunction. We recently demonstrated that hemolysis-induced vascular leakage with barrier dysfunction was a contributory factor to the development of pulmonary hypertension (PH). However, the precise molecular mechanisms involved in the pathology of heme induced barrier disruption still remains to be elucidated. Hypothesis: Previous studies by us showed that free heme activated the p38/MAPK pathway. Therefore, we hypothesized that targeting mitogen-activated protein kinase kinase 3 (MKK3) a key regulator of this pathway would alleviate heme induced vascular leakage. Methods: Barrier dysfunction in human micro-vascular endothelial cells (HLMVEC) was monitored using noninvasive electrical impedance and immunostaining. We used an MKK3 knockout mouse model to assess the efficacy of targeting the p38/MAPK pathway. Results: We found a rapid drop in the HLMVEC barrier integrity with heme, in a dose dependent manner (p<0.05). Investigating the barrier proteins showed that heme significantly affected the tight junction proteins, zona occludens-1, claudin1, and claudin5 (p<0.05). We also found the p38MAPK/HSP27 pathway, involved in regulating the endothelial cytoskeleton remodeling, to be significantly altered with heme treatment, both in the HLMVEC and mice (p<0.05). However, heme treated mice showed no significant change in E-selectin, ICAM1 and VCAM1, indicating that the primary rapid target of heme was the p38/MAPK pathway and not the inflammatory pathways. Finally, injecting mice with heme-FITC-dextran and then following its release into the lungs demonstrated that the MKK3 KO significantly prevented heme induced vascular leakage (p<0.05). Conclusion: We demonstrate that heme induces a rapid barrier dysfunction by disruption of endothelial barrier proteins via the p38/MAPK pathway. Also, knocking out MKK3, a crucial regulator of the p38/MAPK pathway significantly decreased heme induced vascular leakage, a contributory factor to PH. Taken together, our results show that targeting the MKK3/p38MAPK axis represents a decisive treatment strategy in alleviating heme induced barrier dysfunction in cardiovascular diseases.


2008 ◽  
Vol 56 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Ewa Jablonska ◽  
Wioletta Ratajczak ◽  
Jakub Jablonski

2020 ◽  
Vol 20 (4) ◽  
pp. 307-317
Author(s):  
Yuan Yang ◽  
Jin Huang ◽  
Jianzhong Li ◽  
Huansheng Yang ◽  
Yulong Yin

Background: Butyric acid (BT), a short-chain fatty acid, is the preferred colonocyte energy source. The effects of BT on the differentiation, proliferation, and apoptosis of small intestinal epithelial cells of piglets and its underlying mechanisms have not been fully elucidated. Methods: In this study, it was found that 0.2-0.4 mM BT promoted the differentiation of procine jejunal epithelial (IPEC-J2) cells. BT at 0.5 mM or higher concentrations significantly impaired cell viability in a dose- and time-dependent manner. In addition, BT at high concentrations inhibited the IPEC-J2 cell proliferation and induced cell cycle arrest in the G2/M phase. Results: Our results demonstrated that BT triggered IPEC-J2 cell apoptosis via the caspase8-caspase3 pathway accompanied by excess reactive oxygen species (ROS) and TNF-α production. BT at high concentrations inhibited cell autophagy associated with increased lysosome formation. It was found that BT-reduced IPEC-J2 cell viability could be attenuated by p38 MAPK inhibitor SB202190. Moreover, SB202190 attenuated BT-increased p38 MAPK target DDIT3 mRNA level and V-ATPase mRNA level that were responsible for normal acidic lysosomes. Conclusion: In conclusion, 1) at 0.2-0.4 mM, BT promotes the differentiation of IPEC-J2 cells; 2) BT at 0.5 mM or higher concentrations induces cell apoptosis via the p38 MAPK pathway; 3) BT inhibits cells autophagy and promotes lysosome formation at high concentrations.


Author(s):  
Lingfan Xiong ◽  
Wenhao Guo ◽  
Yong Yang ◽  
Danping Gao ◽  
Jun Wang ◽  
...  

Phytomedicine ◽  
2014 ◽  
Vol 21 (12) ◽  
pp. 1746-1752 ◽  
Author(s):  
Ming-Ju Hsieh ◽  
Su-Yu Chien ◽  
Ying-Erh Chou ◽  
Chih-Jung Chen ◽  
Judy Chen ◽  
...  

2011 ◽  
Vol 300 (2) ◽  
pp. C375-C382 ◽  
Author(s):  
Chunhui Wang ◽  
Hua Xu ◽  
Huacong Chen ◽  
Jing Li ◽  
Bo Zhang ◽  
...  

Diarrhea is a common manifestation of gastrointestinal disorders. Diarrhea-induced losses of fluid and electrolyte could lead to dehydration and electrolyte imbalances, resulting in significant morbidity and mortality, especially in children living in developing countries. Somatostatin, a peptide hormone secreted by D-cells, plays an important role in regulating motility and intestinal Na+ absorption. Although octreotide, a somatostatin analog, is used to treat diarrhea, its mechanisms of action are unclear. Here we showed that octreotide increased brush-border membrane Na+/H+ exchanger 8 (NHE8) expression in the small intestine to the exclusion of other NHEs that participate in Na+ absorption. The same effect also occurred in human intestinal cells (Caco-2). We found that the increase of NHE8 expression by somatostatin required p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, the somatostatin receptor SSTR2 antagonist CYN154806 could abolish somatostatin-induced NHE8 expression and p38 MAPK phosphorylation. Thus our data provided the first concrete evidence indicating that somatostatin stimulates intestinal Na+ absorption by increasing intestinal NHE8 expression through the SSTR2-p38 MAPK pathway.


Sign in / Sign up

Export Citation Format

Share Document