scholarly journals Artificial Intelligence in Hypertension

2021 ◽  
Vol 128 (7) ◽  
pp. 1100-1118
Author(s):  
Sandosh Padmanabhan ◽  
Tran Quoc Bao Tran ◽  
Anna F. Dominiczak

Hypertension remains the largest modifiable cause of mortality worldwide despite the availability of effective medications and sustained research efforts over the past 100 years. Hypertension requires transformative solutions that can help reduce the global burden of the disease. Artificial intelligence and machine learning, which have made a substantial impact on our everyday lives over the last decade may be the route to this transformation. However, artificial intelligence in health care is still in its nascent stages and realizing its potential requires numerous challenges to be overcome. In this review, we provide a clinician-centric perspective on artificial intelligence and machine learning as applied to medicine and hypertension. We focus on the main roadblocks impeding implementation of this technology in clinical care and describe efforts driving potential solutions. At the juncture, there is a critical requirement for clinical and scientific expertise to work in tandem with algorithmic innovation followed by rigorous validation and scrutiny to realize the promise of artificial intelligence-enabled health care for hypertension and other chronic diseases.

2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Oliwia Koteluk ◽  
Adrian Wartecki ◽  
Sylwia Mazurek ◽  
Iga Kołodziejczak ◽  
Andrzej Mackiewicz

With an increased number of medical data generated every day, there is a strong need for reliable, automated evaluation tools. With high hopes and expectations, machine learning has the potential to revolutionize many fields of medicine, helping to make faster and more correct decisions and improving current standards of treatment. Today, machines can analyze, learn, communicate, and understand processed data and are used in health care increasingly. This review explains different models and the general process of machine learning and training the algorithms. Furthermore, it summarizes the most useful machine learning applications and tools in different branches of medicine and health care (radiology, pathology, pharmacology, infectious diseases, personalized decision making, and many others). The review also addresses the futuristic prospects and threats of applying artificial intelligence as an advanced, automated medicine tool.


2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


2021 ◽  
pp. 002073142110174
Author(s):  
Md Mijanur Rahman ◽  
Fatema Khatun ◽  
Ashik Uzzaman ◽  
Sadia Islam Sami ◽  
Md Al-Amin Bhuiyan ◽  
...  

The novel coronavirus disease (COVID-19) has spread over 219 countries of the globe as a pandemic, creating alarming impacts on health care, socioeconomic environments, and international relationships. The principal objective of the study is to provide the current technological aspects of artificial intelligence (AI) and other relevant technologies and their implications for confronting COVID-19 and preventing the pandemic’s dreadful effects. This article presents AI approaches that have significant contributions in the fields of health care, then highlights and categorizes their applications in confronting COVID-19, such as detection and diagnosis, data analysis and treatment procedures, research and drug development, social control and services, and the prediction of outbreaks. The study addresses the link between the technologies and the epidemics as well as the potential impacts of technology in health care with the introduction of machine learning and natural language processing tools. It is expected that this comprehensive study will support researchers in modeling health care systems and drive further studies in advanced technologies. Finally, we propose future directions in research and conclude that persuasive AI strategies, probabilistic models, and supervised learning are required to tackle future pandemic challenges.


2018 ◽  
Vol 14 (4) ◽  
pp. 734-747 ◽  
Author(s):  
Constance de Saint Laurent

There has been much hype, over the past few years, about the recent progress of artificial intelligence (AI), especially through machine learning. If one is to believe many of the headlines that have proliferated in the media, as well as in an increasing number of scientific publications, it would seem that AI is now capable of creating and learning in ways that are starting to resemble what humans can do. And so that we should start to hope – or fear – that the creation of fully cognisant machine might be something we will witness in our life time. However, much of these beliefs are based on deep misconceptions about what AI can do, and how. In this paper, I start with a brief introduction to the principles of AI, machine learning, and neural networks, primarily intended for psychologists and social scientists, who often have much to contribute to the debates surrounding AI but lack a clear understanding of what it can currently do and how it works. I then debunk four common myths associated with AI: 1) it can create, 2) it can learn, 3) it is neutral and objective, and 4) it can solve ethically and/or culturally sensitive problems. In a third and last section, I argue that these misconceptions represent four main dangers: 1) avoiding debate, 2) naturalising our biases, 3) deresponsibilising creators and users, and 4) missing out some of the potential uses of machine learning. I finally conclude on the potential benefits of using machine learning in research, and thus on the need to defend machine learning without romanticising what it can actually do.


2015 ◽  
Vol 3 (2) ◽  
pp. 115-126 ◽  
Author(s):  
Naresh Babu Bynagari

Artificial Intelligence (AI) is one of the most promising and intriguing innovations of modernity. Its potential is virtually unlimited, from smart music selection in personal gadgets to intelligent analysis of big data and real-time fraud detection and aversion. At the core of the AI philosophy lies an assumption that once a computer system is provided with enough data, it can learn based on that input. The more data is provided, the more sophisticated its learning ability becomes. This feature has acquired the name "machine learning" (ML). The opportunities explored with ML are plentiful today, and one of them is an ability to set up an evolving security system learning from the past cyber-fraud experiences and developing more rigorous fraud detection mechanisms. Read on to learn more about ML, the types and magnitude of fraud evidenced in modern banking, e-commerce, and healthcare, and how ML has become an innovative, timely, and efficient fraud prevention technology.


2020 ◽  
Author(s):  
Sandeep Reddy ◽  
Sonia Allan ◽  
Simon Coghlan ◽  
Paul Cooper

The re-emergence of artificial intelligence (AI) in popular discourse and its application in medicine, especially via machine learning (ML) algorithms, has excited interest from policymakers and clinicians alike. The use of AI in clinical care in both developed and developing countries is no longer a question of ‘if?’ but ‘when?’. This creates a pressing need not only for sound ethical guidelines but also for robust governance frameworks to regulate AI in medicine around the world. In this article, we discuss what components need to be considered in developing these governance frameworks and who should lead this worldwide effort?


To build up a particular profile about a person, the study of examining the comportment is known as Behavior analysis. Initially the Behavior analysis is used in psychology and for suggesting and developing different types the application content for user then it developed in information technology. To make the applications for user's personal needs it becoming a new trends with the use of artificial intelligence (AI). in many applications like innovation to do everything from anticipating buy practices to altering a home's indoor regulator to the inhabitant's optimal temperature for a specific time of day use machine learning and artificial intelligence technology. The technique that is use to advance the rule proficiency that rely upon the past experience is known as machine learning. By utilizing the insights hypothesis it makes the numerical model, and its real work is to infer from the models gave. To take the information clearly from the data the methodology utilizes computational techniques.


Author(s):  
Melda Yucel ◽  
Gebrail Bekdaş ◽  
Sinan Melih Nigdeli

This chapter presents a summary review of development of Artificial Intelligence (AI). Definitions of AI are given with basic features. The development process of AI and machine learning is presented. The developments of applications from the past to today are mentioned and use of AI in different categories is given. Prediction applications using artificial neural network are given for engineering applications. Usage of AI methods to predict optimum results is the current trend and it will be more important in the future.


Sign in / Sign up

Export Citation Format

Share Document