scholarly journals In defence of machine learning: Debunking the myths of artificial intelligence

2018 ◽  
Vol 14 (4) ◽  
pp. 734-747 ◽  
Author(s):  
Constance de Saint Laurent

There has been much hype, over the past few years, about the recent progress of artificial intelligence (AI), especially through machine learning. If one is to believe many of the headlines that have proliferated in the media, as well as in an increasing number of scientific publications, it would seem that AI is now capable of creating and learning in ways that are starting to resemble what humans can do. And so that we should start to hope – or fear – that the creation of fully cognisant machine might be something we will witness in our life time. However, much of these beliefs are based on deep misconceptions about what AI can do, and how. In this paper, I start with a brief introduction to the principles of AI, machine learning, and neural networks, primarily intended for psychologists and social scientists, who often have much to contribute to the debates surrounding AI but lack a clear understanding of what it can currently do and how it works. I then debunk four common myths associated with AI: 1) it can create, 2) it can learn, 3) it is neutral and objective, and 4) it can solve ethically and/or culturally sensitive problems. In a third and last section, I argue that these misconceptions represent four main dangers: 1) avoiding debate, 2) naturalising our biases, 3) deresponsibilising creators and users, and 4) missing out some of the potential uses of machine learning. I finally conclude on the potential benefits of using machine learning in research, and thus on the need to defend machine learning without romanticising what it can actually do.

2019 ◽  
Vol 19 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Qihui Wu ◽  
Hanzhong Ke ◽  
Dongli Li ◽  
Qi Wang ◽  
Jiansong Fang ◽  
...  

Over the past decades, peptide as a therapeutic candidate has received increasing attention in drug discovery, especially for antimicrobial peptides (AMPs), anticancer peptides (ACPs) and antiinflammatory peptides (AIPs). It is considered that the peptides can regulate various complex diseases which are previously untouchable. In recent years, the critical problem of antimicrobial resistance drives the pharmaceutical industry to look for new therapeutic agents. Compared to organic small drugs, peptide- based therapy exhibits high specificity and minimal toxicity. Thus, peptides are widely recruited in the design and discovery of new potent drugs. Currently, large-scale screening of peptide activity with traditional approaches is costly, time-consuming and labor-intensive. Hence, in silico methods, mainly machine learning approaches, for their accuracy and effectiveness, have been introduced to predict the peptide activity. In this review, we document the recent progress in machine learning-based prediction of peptides which will be of great benefit to the discovery of potential active AMPs, ACPs and AIPs.


2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


2015 ◽  
Vol 3 (2) ◽  
pp. 115-126 ◽  
Author(s):  
Naresh Babu Bynagari

Artificial Intelligence (AI) is one of the most promising and intriguing innovations of modernity. Its potential is virtually unlimited, from smart music selection in personal gadgets to intelligent analysis of big data and real-time fraud detection and aversion. At the core of the AI philosophy lies an assumption that once a computer system is provided with enough data, it can learn based on that input. The more data is provided, the more sophisticated its learning ability becomes. This feature has acquired the name "machine learning" (ML). The opportunities explored with ML are plentiful today, and one of them is an ability to set up an evolving security system learning from the past cyber-fraud experiences and developing more rigorous fraud detection mechanisms. Read on to learn more about ML, the types and magnitude of fraud evidenced in modern banking, e-commerce, and healthcare, and how ML has become an innovative, timely, and efficient fraud prevention technology.


To build up a particular profile about a person, the study of examining the comportment is known as Behavior analysis. Initially the Behavior analysis is used in psychology and for suggesting and developing different types the application content for user then it developed in information technology. To make the applications for user's personal needs it becoming a new trends with the use of artificial intelligence (AI). in many applications like innovation to do everything from anticipating buy practices to altering a home's indoor regulator to the inhabitant's optimal temperature for a specific time of day use machine learning and artificial intelligence technology. The technique that is use to advance the rule proficiency that rely upon the past experience is known as machine learning. By utilizing the insights hypothesis it makes the numerical model, and its real work is to infer from the models gave. To take the information clearly from the data the methodology utilizes computational techniques.


Author(s):  
Amandeep Singh Bhatia ◽  
Renata Wong

Quantum computing is a new exciting field which can be exploited to great speed and innovation in machine learning and artificial intelligence. Quantum machine learning at crossroads explores the interaction between quantum computing and machine learning, supplementing each other to create models and also to accelerate existing machine learning models predicting better and accurate classifications. The main purpose is to explore methods, concepts, theories, and algorithms that focus and utilize quantum computing features such as superposition and entanglement to enhance the abilities of machine learning computations enormously faster. It is a natural goal to study the present and future quantum technologies with machine learning that can enhance the existing classical algorithms. The objective of this chapter is to facilitate the reader to grasp the key components involved in the field to be able to understand the essentialities of the subject and thus can compare computations of quantum computing with its counterpart classical machine learning algorithms.


Author(s):  
Melda Yucel ◽  
Gebrail Bekdaş ◽  
Sinan Melih Nigdeli

This chapter presents a summary review of development of Artificial Intelligence (AI). Definitions of AI are given with basic features. The development process of AI and machine learning is presented. The developments of applications from the past to today are mentioned and use of AI in different categories is given. Prediction applications using artificial neural network are given for engineering applications. Usage of AI methods to predict optimum results is the current trend and it will be more important in the future.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yujie Song ◽  
Laurène Bernard ◽  
Christian Jorgensen ◽  
Gilles Dusfour ◽  
Yves-Marie Pers

During the past 20 years, the development of telemedicine has accelerated due to the rapid advancement and implementation of more sophisticated connected technologies. In rheumatology, e-health interventions in the diagnosis, monitoring and mentoring of rheumatic diseases are applied in different forms: teleconsultation and telecommunications, mobile applications, mobile devices, digital therapy, and artificial intelligence or machine learning. Telemedicine offers several advantages, in particular by facilitating access to healthcare and providing personalized and continuous patient monitoring. However, some limitations remain to be solved, such as data security, legal problems, reimbursement method, accessibility, as well as the application of recommendations in the development of the tools.


10.23856/3303 ◽  
2019 ◽  
Vol 33 (2) ◽  
pp. 28-35 ◽  
Author(s):  
Inta Kotane ◽  
Daina Znotina ◽  
Serhii Hushko

One of the conditions for the future development of companies is the identification and use of digital capabilities. In recent years, the environment in which we live and work has changed radically. If the emergence of the Internet was revolutionary in the way we communicate and obtain information, currently the availability and mobility of technologies affects consumers' habits and promotes the transformation of classic business models. Aim of the study: to explore and learn about the development trends of digital marketing. Applied research methods: monographic descriptive method, analysis, synthesis, statistical method. The study based on scientific publications, statistics and other sources of information. The results of the study show that in 2019 digital marketing tools are most actively used: artificial intelligence / augmented reality / machine learning; video marketing; chatbots, virtual assistants.


Sign in / Sign up

Export Citation Format

Share Document