scholarly journals Cooperative Binding of ETS2 and NFAT Link Erk1/2 and Calcineurin Signaling in the Pathogenesis of Cardiac Hypertrophy

Author(s):  
Yuxuan Luo ◽  
Nan Jiang ◽  
Herman I. May ◽  
Xiang Luo ◽  
Anwarul Ferdous ◽  
...  

Background: Cardiac hypertrophy is an independent risk factor for heart failure, a leading cause of morbidity and mortality globally. The calcineurin/NFAT (nuclear factor of activated T cells) pathway and the MAPK/Erk (extracellular signal-regulated kinase) pathway contribute to the pathogenesis of cardiac hypertrophy as an inter-dependent network of signaling cascades. However, how these pathways interact remains unclear, and specifically few direct targets responsible for the pro-hypertrophic role of NFAT have been described. Methods: By engineering a cardiomyocyte-specific ETS2 (a member of E26 transformationspecific sequence (ETS)-domain family) knockout mice, we investigated the role of ETS2 in cardiac hypertrophy. Primary cardiomyocytes were also used to evaluate ETS2 function in cell growth. Results: ETS2 is phosphorylated and activated by Erk1/2 upon hypertrophic stimulation in both mouse (n = 3) and human heart samples (n = 8-19). Conditional deletion of ETS2 in mouse cardiomyocytes protects against pressure overload-induced cardiac hypertrophy (n = 6-11). Furthermore, silencing of ETS2 in the hearts of calcineurin transgenic mice significantly attenuates hypertrophic growth and contractile dysfunction (n = 8). As a transcription factor, ETS2 is capable of binding to the promoters of hypertrophic marker genes, such as ANP, BNP and Rcan1.4 (n = 4). Additionally, we report that ETS2 forms a complex with NFAT to stimulate transcriptional activity through increased NFAT binding to the promoters of at least two hypertrophy-stimulated genes, Rcan1.4 and miR-223 (n = 4-6). Suppression of miR-223 in cardiomyocytes inhibits calcineurin-mediated cardiac hypertrophy (n = 6), revealing miR-223 as a novel pro-hypertrophic target of the calcineurin-NFAT and Erk1/2-ETS2 pathways. Conclusions: In aggregate, our findings point to a critical role for ETS2 in calcineurin-NFAT pathway-driven cardiac hypertrophy and unveil a previously unknown molecular connection between the Erk1/2 activation of ETS2 and expression of NFAT/ETS2 target genes.

Author(s):  
Yuhao Zhang ◽  
Sheng-an Su ◽  
Wudi Li ◽  
Yuankun Ma ◽  
Jian Shen ◽  
...  

Hemodynamic overload induces pathological cardiac hypertrophy, which is an independent risk factor for intractable heart failure in long run. Beyond neurohumoral regulation, mechanotransduction has been recently recognized as a major regulator of cardiac hypertrophy under a myriad of conditions. However, the identification and molecular features of mechanotransducer on cardiomyocytes are largely sparse. For the first time, we identified Piezo1 (Piezo type mechanosensitive ion channel component 1), a novel mechanosensitive ion channel with preference to Ca 2+ was remarkably upregulated under pressure overload and enriched near T-tubule and intercalated disc of cardiomyocyte. By applying cardiac conditional Piezo1 knockout mice (Piezo1 fl/fl Myh6Cre+, Piezo1 Cko ) undergoing transverse aortic constriction, we demonstrated that Piezo1 was required for the development of cardiac hypertrophy and subsequent adverse remodeling. Activation of Piezo1 by external mechanical stretch or agonist Yoda1 lead to the enlargement of cardiomyocytes in vitro, which was blocked by Piezo1 silencing or Yoda1 analog Dooku1 or Piezo1 inhibitor GsMTx4. Mechanistically, Piezo1 perturbed calcium homeostasis, mediating extracellular Ca 2+ influx and intracellular Ca 2+ overload, thereby increased the activation of Ca 2+ -dependent signaling, calcineurin, and calpain. Inhibition of calcineurin or calpain could abolished Yoda1 induced upregulation of hypertrophy markers and the hypertrophic growth of cardiomyocytes in vitro. From a comprehensive view of the cardiac transcriptome, most of Piezo1 affected genes were highly enriched in muscle cell physiology, tight junction, and corresponding signaling. This study characterizes an undefined role of Piezo1 in pressure overload induced cardiac hypertrophy. It may partially decipher the differential role of calcium under pathophysiological condition, implying a promising therapeutic target for cardiac dysfunction.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Zhan-Peng Huang ◽  
Masaharu Kataoka ◽  
Jinghai Chen ◽  
Da-Zhi Wang

Cardiac hypertrophy is one of the primary responses of the heart to pathophysiological stress. However, the mechanism of the transition from compensative hypertrophic growth to cardiac dilation is poor understood. Recently, we identified a cardiac-specific expressed gene CIP. The expression of CIP is unchanged in hypertrophic heart but significantly down-regulated in dilated hearts, suggesting CIP may play an important role in the transition from cardiac hypertrophy to dilated cardiomyopathy. We generated CIP knockout mice and found that CIP is dispensable for cardiac development. Interestingly, CIP-null mutant mice developed severe cardiac dilation 4 weeks after TAC (transverse aortic constriction) surgery, while control mice were still at the stage of compensative hypertrophic growth. Echocardiography and histological examinations showed that mutant hearts had enlarged chamber with thinner ventricle wall and decreased cardiac performance compared to controls. The expression of marker genes of cardiac disease, BNP and Myh7, was elevated. Consistently, deletion of CIP in Myh6-CnA transgenic mice result in premature death, displaying severe left ventricle dilation. Conversely, cardiac-specific CIP overexpression inhibited pressure overload-induced cardiac hypertrophy. CIP transgenic mice exhibit decreased ventricle weight/body weight ratio, decreased cardiomyocyte cross-section area and repressed expression of hypertrophic related marker genes. CIP overexpression also protected the heart from developing cardiac dilation and preserved the cardiac function after prolonged pressure overload. We performed unbiased microarray assay to document the transcriptome in CIP knockout and control mice which were subjected to pressure overload (TAC). The analysis of Gene Ontology term indicated the Negative Regulation of Apoptosis was down-regulated while the Collagen/Extracellular Structure Organization was up-regulated in CIP-null hearts under TAC condition. In summary, our studies established CIP as a key regulator of the transition from cardiac hypertrophy to dilated cardiomyopathy. The protective effect of CIP in cardiac remodeling indicates that CIP could become a therapeutic target for cardiac diseases.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 849-849
Author(s):  
Giulia Morello ◽  
Patrizia Porazzi ◽  
Enrico Moro ◽  
Francesco Argenton ◽  
Giuseppe Basso ◽  
...  

Abstract Abstract 849 Objective: DOT1L is a H3K79 methyltransferase implicated in multiple biological processes including embryonic development, cell proliferation, DNA damage repair and hematopoiesis. Recently, it was reported that DOT1L interacts with various transcription factor MLL partner proteins, and that aberrant DOT1L methyltransferase activity is essential for the form of leukemogenesis mediated by MLL fusion oncoproteins. These findings led to current efforts in therapeutic targeting of DOT1L for MLL-rearranged leukemias. However, the role of DOT1L in hematopoiesis is incompletely understood, largely because all prior studies were conducted using mice where Dot1L inactivation leads to early embryonic lethality due in part to the failure of primitive hematopoiesis, precluding analysis Dot1L during the transition from primitive to definitive hematopoiesis. In this study we took advantage of a unique attribute of zebrafish to survive for several days without blood cells, which offers new possibilities to study effects of loss of function of genes that cause embryonic lethality in mice from hematopoietic defects. Here, we report a functional characterization of the zebrafish dot1l gene during development, with particular emphasis on its role in hematopoietic regulation. Methods and Results: We identified a single ortholog of human DOT1L on zebrafish chromosome 22 using the NCBI HomoloGene resource, with a predicted protein that is 66% identical to human DOT1L overall and has greatest similarity (96%) restricted to its methyltransferase domain. Highly conserved syntenic genes surrounding zebrafish dot1l and genes in chromosomal regions containing human DOT1L (chr. 19) and mouse Dot1L (chr. 10) suggested functional similarity and formed the basis to further investigate the zebrafish ortholog. By whole-mount in situ hybridization (WISH) dot1l was found as early as the 2-cell stage before zygotic gene expression starts, indicating maternally supplied transcripts in the embryo. Zygotic dot1l expression was detected at 20 hpf in the posterior intermediate cell mass (ICM) where primitive erythropoiesis occurs in zebrafish. Two different splice blocking morpholinos were used to inhibit dot1l pre-mRNA splicing in either wild type or fluorescent reporter lines to determine the consequences of zebrafish dot1l depletion. The morphants showed impaired growth, defective angiogenesis and cardiac dilatation, consistent with developmental defects in Dot1L−/−mice. Although Dot1L−/−murine embryos are anemic, o-dianisidine staining of the morphants at 48 hpf showed reduced circulating red cells during definitive hematopoiesis beyond when Dot1L−/− mice are viable. Reduced in vivo fluorescence in Tg(gata1:dsRed) dot1l morphants at 48 hpf also suggested an erythroid defect. WISH analysis of 24 hpf dot1l morphants revealed significant up-regulation of the myeloid marker pu.1 in the anterior lateral plate mesoderm (ALPM) where primitive myelopoiesis occurs in zebrafish, persistent and ectopic pu.1 expression in the ICM and reduced expression of the early progenitor marker gata2 and the erythroid marker gata1. Additionally at 20 hpf, Tg(pu.1:gfp) dot1l morphants suggested increased pu.1 expressing cells in the ALPM, yolk and ICM. These results indicate that dot1l plays essential roles in primitive erythropoiesis and primitive myelopoiesis and in the erythromyeloid cell fate decision during transient definitive hematopoiesis. Monitoring of hematopoietic and developmental marker genes by qRT-PCR in 24 hpf embryos confirmed the expansion of myelopoiesis and impairment of erythropoiesis. Interestingly, qRT-PCR analysis also revealed an entirely new finding that two key target genes in MLL-fusion-mediated leukemogenesis, hoxa9 and meis1, were downregulated in dot1l morphants. Conclusion: This work demonstrates a critical role of dot1l in zebrafish primitive erythropoiesis, in agreement with previous observations in Dot1L−/− mice, but reveals a new role of dot1l in erythromyeloid progenitor differentiation in transient definitive hematopoiesis. Furthermore, based on reduced hoxa9 and meis1 expression with dot1l depletion, we report for the first time that dot1l is a key regulator of hoxa9a and meis1 gene expression, human orthologs of both of which are key upregulated target genes in MLL leukemogenesis. These discoveries also have important implications for DOT1L directed therapies. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 22 (21) ◽  
pp. 7603-7613 ◽  
Author(s):  
Benjamin J. Wilkins ◽  
Leon J. De Windt ◽  
Orlando F. Bueno ◽  
Julian C. Braz ◽  
Betty J. Glascock ◽  
...  

ABSTRACT A calcineurin-nuclear factor of activated T cells (NFAT) regulatory pathway has been implicated in the control of cardiac hypertrophy, suggesting one mechanism whereby alterations in intracellular calcium handling are linked to the expression of hypertrophy-associated genes. Although recent studies have demonstrated a necessary role for calcineurin as a mediator of cardiac hypertrophy, the potential involvement of NFAT transcription factors as downstream effectors of calcineurin signaling has not been evaluated. Accordingly, mice with targeted disruptions in NFATc3 and NFATc4 genes were characterized. Whereas the loss of NFATc4 did not compromise the ability of the myocardium to undergo hypertrophic growth, NFATc3-null mice demonstrated a significant reduction in calcineurin transgene-induced cardiac hypertrophy at 19 days, 26 days, 6 weeks, 8 weeks, and 10 weeks of age. NFATc3-null mice also demonstrated attenuated pressure overload- and angiotensin II-induced cardiac hypertrophy. These results provide genetic evidence that calcineurin-regulated responses require NFAT effectors in vivo.


2004 ◽  
Vol 24 (24) ◽  
pp. 10611-10620 ◽  
Author(s):  
Kazuhiko Nishida ◽  
Osamu Yamaguchi ◽  
Shinichi Hirotani ◽  
Shungo Hikoso ◽  
Yoshiharu Higuchi ◽  
...  

ABSTRACT The molecular mechanism for the transition from cardiac hypertrophy, an adaptive response to biomechanical stress, to heart failure is poorly understood. The mitogen-activated protein kinase p38α is a key component of stress response pathways in various types of cells. In this study, we attempted to explore the in vivo physiological functions of p38α in hearts. First, we generated mice with floxed p38α alleles and crossbred them with mice expressing the Cre recombinase under the control of the α-myosin heavy-chain promoter to obtain cardiac-specific p38α knockout mice. These cardiac-specific p38α knockout mice were born normally, developed to adulthood, were fertile, exhibited a normal life span, and displayed normal global cardiac structure and function. In response to pressure overload to the left ventricle, they developed significant levels of cardiac hypertrophy, as seen in controls, but also developed cardiac dysfunction and heart dilatation. This abnormal response to pressure overload was accompanied by massive cardiac fibrosis and the appearance of apoptotic cardiomyocytes. These results demonstrate that p38α plays a critical role in the cardiomyocyte survival pathway in response to pressure overload, while cardiac hypertrophic growth is unaffected despite its dramatic down-regulation.


Author(s):  
Lisa E Dorn ◽  
William R Lawrence ◽  
Jennifer Petrosino ◽  
Xianyao Xu ◽  
Thomas J Hund ◽  
...  

Rationale: Cardiac hypertrophy, a major risk factor for heart failure, occurs when cardiomyocytes remodel in response to complex signaling induced by injury or cell stress. Although cardiomyocytes are the ultimate effectors of cardiac hypertrophy, non-myocyte populations play a large yet understudied role in determining how cardiomyocytes respond to stress. Objective: To identify novel paracrine regulators of cardiomyocyte hypertrophic remodeling. Methods and Results: : We have identified a novel role for a non-myocyte-derived and TGFbeta1-induced extracellular matrix protein Microfibrillar-associated protein 4 (MFAP4) in the pathophysiology of cardiac remodeling. We have determined that non-myocyte cells are the primary sources of MFAP4 in the heart in response to TGFbeta1 stimulation. Furthermore, we have demonstrated a crucial role of MFAP4 in the cardiac adaptation to stress. Global knockout of MFAP4 led to increased cardiac hypertrophy and worsened cardiac function following chronic pressure overload. Also, one week of angiotensin-mediated neurohumoral stimulation was sufficient to exacerbate cardiomyocyte hypertrophy in MFAP4 null mice. In contrast, administration of exogenous MFAP4 to isolated cardiomyocytes blunted their phenylephrine-induced hypertrophic growth through an integrin-dependent mechanism. Finally, MFAP4 deficiency leads to dysregulated integration of G protein-coupled receptor and integrin signaling in the heart. Conclusions: Altogether, our results demonstrate a critical paracrine role of MFAP4 in the development of cardiac hypertrophy and could inform future treatment options for heart failure patients.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Nobuhiro Ayuzawa ◽  
Miki Nagase ◽  
Kohei Ueda ◽  
Kenichi Ishizawa ◽  
Maki Takeuchi ◽  
...  

A Rho family GTPase, Rac1, has emerged as an important molecule involved in cardiac remodeling. Some studies demonstrated the requirement of Rac1 in angiotensin II-induced cardiac hypertrophy and diabetic cardiomyopathy in association with generation of reactive oxygen species (ROS). However its role in pressure overload-induced cardiac remodeling is still unclear. On the other hand, we previously reported that Rac1 can activate mineralocorticoid receptor (MR) in cultured cardiomyocytes. Here we demonstrate the requirement of Rac1 in pressure-overload cardiac remodeling, and putative role of MR as a downstream pathway of Rac1. First, we performed sham or transverse aortic constriction (TAC) surgery in C57BL/6 mice, and examined the effect of Rac1 inhibitor ( NSC23766 ) and MR blocker (eplerenone). After 7 weeks, TAC caused severe hypertrophy and dysfunction of left ventricle with significant increase in active form of Rac1. In addition, the amount of MR protein in nuclear fraction, and the expression of some target genes of MR (including serpina3n and serpine-1) in left ventricle were also increased by TAC. NSC23766 significantly reduced the TAC-induced activation of Rac1, and both NSC23766 and eplerenone attenuated cardiac hypertrophy and dysfunction, along with inhibition of MR signaling. Furthermore, TAC significantly increased ROS production in left ventricle, which was also attenuated by both of the pharmacological interventions. We next generated cardiomyocyte-specific heterozygous Rac1-deficient mice (Rac1 CM +/− ) and littermate wild-type mice (WT), and performed Sham or TAC surgery. The TAC-induced hypertrophy and dysfunction of left ventricle were significantly suppressed in Rac1 CM +/− compared with WT (heart/body weight ratio: 6.4 ± 0.86 vs 10.8 ± 0.81 mg/g, ejection fraction 54.1 ± 6.5 vs 33.3 ± 7.3 %, p < 0.05), with inhibition of Rac1 activation. Nuclear translocation of MR protein and increases in expression of the target genes of MR were also significantly attenuated in Rac1 CM +/− compared with WT. These results indicate that Rac1 plays an essential role in the maladaptive cardiac hypertrophy induced by pressure overload, and that MR is an important downstream pathway of Rac1 in heart.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Hiroyuki Nakayama ◽  
Tatsuto Hamatani ◽  
Shohei Kumagai ◽  
Kota Tonegawa ◽  
Tomomi Yamashita ◽  
...  

Backgrounds: Recent studies demonstrated that the osteopontin (OPN), an acid phosphoprotein plays pivotal roles in cardiac hypertrophy and failure. An osteogenic transcription factor Runx2 regulates the expression of OPN in osteoblasts. In the present study, we examined the pathological role of Runx2 in cardiac hypertrophy and failure. Methods and Results: Runx2 expression was detected in neonatal cardiomyocytes and upregulated in heart 14 days after myocardial infarction (MI) as well as 7days after transverse aortic constriction (TAC) procedures. To determine the functional role of Runx2 in heart, we generated transgenic mice (TG) with inducible cardiac-specific overexpression of Runx2. Two TG lines (low and high) were obtained and high-expressing TG (HE-TG) showed premature death within 8 weeks of age specifically in male mice. At two months of age, the survived male and female HE-TG displayed significant increases in heart weight/body weight ratio (mg/g) compared to controls (control; 4.95±0.26, n=6 vs HE-TG; 6.63±0.12, n=5, p<.05). Consistent with those results, the expression of hypertrophic marker genes such as atrial natriuretic factor (ANF) and αskeletal actin significantly increased in HE-TG heart assessed by real-time RT-PCR analysis. In addition, HE-TG mice demonstrated decreased fractional shortening assessed by echocardiography (control; 44.1±1.89%, n=9 vs HE-TG; 23.9±3.48%, n=7, p<.05). HE-TG mice demonstrated significantly lower heart rate (control; 630±18 bpm, vs HE-TG; 350±74 bpm, n=3 each, p<.05) and complete atrioventricular block by telemetry analysis. In response to pressure overload, low expressing TG (LE-TG) demonstrated higher mortality and enhanced cardiac hypertrophic response after TAC (control; 6.20±0.23, n=6 vs LE-TG; 6.90±0.26, n=4, p<.05). Conclusions: Targeted expression of Runx2 in heart mediates cardiac dysfunction and hypertrophy in mice. Thus, Runx2 could be a novel therapeutic target for heart failure.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rongchuan Yue ◽  
Zaiyong Zheng ◽  
Yu Luo ◽  
Xiaobo Wang ◽  
Mingming Lv ◽  
...  

AbstractThe exact mechanism of myocardial hypertrophy has not been completely elucidated. NOD-like receptor protein 3 (NLRP3) and the pyroptotic cascade play a critical role in cardiac hypertrophy and inflammation. The myokine irisin can inhibit NLRP3 activation, although its exact mechanism of action is unknown. In this study, we induced cardiac hypertrophy in a mouse model via aortic constriction (TAC) to further explore the pathological role of NLRP3 inflammasome-mediated pyroptosis and the potential therapeutic effects of irisin. Cardiac hypertrophy significantly increased the percentage of apoptotic cells and upregulated IL-1β, cleaved caspase-1, and GSDMD-N that lie downstream of the NLRP3 inflammasome. Subsequently, irisin was co-administered to the TAC mice or angiotensin II (Ang-II)-treated cardiomyocytes to observe whether it could attenuate pyroptosis and cardiac hypertrophy. We established a direct association between pyroptosis and cardiac hypertrophy and found that pharmacological or genetic inhibition of NLRP3 attenuated cardiac hypertrophy. Furthermore, ectopic overexpression of NLRP3 abrogated the cardioprotective effects of irisin. To summarize, pyroptosis is a pathological factor in cardiac hypertrophy, and irisin is a promising therapeutic agent that inhibits NLRP3-mediated pyroptosis of cardiomyocytes.


Sign in / Sign up

Export Citation Format

Share Document