Abstract 202: Activation of Cyp4a12-20-HETE Synthase Increases Blood Pressure and Promotes Vascular Hypertrophy and Cardiac Dysfunction

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Gregory Joseph ◽  
Yan Ding ◽  
Victor Garcia ◽  
Elisabeth Steadman ◽  
Jorge Capdevila ◽  
...  

20-Hydroxyeicosatetraenoic acid (20-HETE) is a microcirculatory cytochrome P450-derived eicosanoid shown to increase smooth muscle contractions and proliferation, stimulate endothelial dysfunction and activation, and promotes hypertension. We developed a mouse model (Cyp4a12tg) in which the expression of Cyp4a12, the sole 20-HETE synthase in mouse, is under the control of the doxycycline (DOX) promoter. Administration of DOX to Cyp4a12tg mice increased blood pressure (131±3 vs 100±2 mmHg, p<0.05), which was prevented by co-treatment with the 20-HETE antagonist, 20-HEDGE (96±3 mmHg, p<0.05). Media-to-lumen ratio and medial cross sectional area of renal microvessels from DOX-treated Cyp4a12tg mice significantly increased compared to untreated (M/L, 0.15±0.01 vs 0.07±0.01; mCSAx103 10.8±0.92 vs. 6.4±0.48 mm2); these increases were abolished by co-treatment with 20-HEDGE. Cardiac output and heart rate were unchanged, whereas %EF and %FS were reduced and LV volume and diameter at systole increased in DOX-treated Cyp4a12tg. Total peripheral resistance (TPR) was significantly increased in DOX-treated Cyp4a12tg mice (8.00±0.39 vs 6.77±0.36 mmHg/ml/min, p<0.05); co-treatment with 20-HEDGE decreased (p<0.0%) DOX-induced TPR in Cyp4a12tg mice (7.45±0.22 mmHg/ml/min). These results indicate that activation of Cyp4a12-20-HETE synthase causes hypertension, microvascular remodeling, and cardiac dysfunction. The results also suggest that 20-HETE promotes hypertension by increasing TPR. However, the mechanisms underlying Cyp4a12-20-HETE-driven microvascular remodeling and cardiac dysfunction are yet to be explored.

1993 ◽  
Vol 265 (5) ◽  
pp. R1132-R1140 ◽  
Author(s):  
N. B. Olivier ◽  
R. B. Stephenson

Open-loop baroreflex responses were evaluated in eight conscious dogs before and during congestive heart failure to determine the effects of failure on baroreflex control of blood pressure, heart rate, cardiac output, and total peripheral resistance. Heart failure was induced by rapid ventricular pacing. Baroreflex function was determined by calculation of the range and gain of the open-loop stimulus-response relationships for the effect of carotid sinus pressure on blood pressure, heart rate, cardiac output, and total peripheral resistance. The range and gain of blood pressure responses were substantially reduced as early as 3 days after induction of heart failure (161 +/- 6 to 99 +/- 8 mmHg and -2.7 +/- 0.3 to -1.5 +/- 0.1, respectively) and remained depressed for the 21 days of heart failure. This depression in baroreflex control of blood pressure was associated with similar depressions in reflex range and gain for heart rate (125 +/- 9 to 78 +/- 11 beats/min and -2.05 +/- 0.2 to -1.16 +/- 0.2 beats/min, respectively) and cardiac output (1.74 +/- 0.2 to 0.46 +/- 0.2 l/min and -0.81 +/- 0.02 to -0.027 +/- 0.008 l/min, respectively). The group-averaged range and gain for reflex control of vascular resistance were not altered by heart failure. In three dogs, discontinuation of rapid ventricular pacing led to resolution of heart failure within 7 days and partial restoration of the range and gain of reflex control of blood pressure. We conclude that heart failure reversibly depresses baroreflex control of blood pressure principally through a concurrent reduction in reflex control of cardiac output, whereas reflex control of vascular resistance is not consistently affected.


2001 ◽  
Vol 281 (3) ◽  
pp. H1040-H1046 ◽  
Author(s):  
J. Kevin Shoemaker ◽  
Debbie D. O'Leary ◽  
Richard L. Hughson

Arterial hypocapnia has been associated with orthostatic intolerance. Therefore, we tested the hypothesis that hypocapnia may be detrimental to increases in muscle sympathetic nerve activity (MSNA) and total peripheral resistance (TPR) during head-up tilt (HUT). Ventilation was increased ∼1.5 times above baseline for each of three conditions, whereas end-tidal Pco 2 (Pet CO2 ) was clamped at normocapnic (Normo), hypercapnic (Hyper; +5 mmHg relative to Normo), and hypocapnic (Hypo; −5 mmHg relative to Normo) conditions. MSNA (microneurography), heart rate, blood pressure (BP, Finapres), and cardiac output (Q, Doppler) were measured continuously during supine rest and 45° HUT. The increase in heart rate when changing from supine to HUT ( P < 0.001) was not different across Pet CO2 conditions. MSNA burst frequency increased similarly with HUT in all conditions ( P < 0.05). However, total MSNA and the increase in total amplitude relative to baseline (%ΔMSNA) increased more when changing to HUT during Hypo compared with Hyper ( P < 0.05). Both BP and Q were higher during Hyper than both Normo and Hypo (main effect; P < 0.05). Therefore, the MSNA response to HUT varied inversely with levels of Pet CO2 . The combined data suggest that augmented cardiac output with hypercapnia sustained blood pressure during HUT leading to a diminished sympathetic response.


1989 ◽  
Vol 256 (3) ◽  
pp. R778-R785 ◽  
Author(s):  
M. I. Talan ◽  
B. T. Engel

Heart rate, stroke volume, and intra-arterial blood pressure were monitored continuously in each of four monkeys, 18 consecutive h/day for several weeks. The mean heart rate, stroke volume, cardiac output, systolic and diastolic blood pressure, and total peripheral resistance were calculated for each minute and reduced to hourly means. After base-line data were collected for approximately 20 days, observation was continued for equal periods of time under conditions of alpha-sympathetic blockade, beta-sympathetic blockade, and double sympathetic blockade. This was achieved by intra-arterial infusion of prazosin, atenolol, or a combination of both in concentration sufficient for at least 75% reduction of response to injection of agonists. The results confirmed previous findings of a diurnal pattern characterized by a fall in cardiac output and a rise in total peripheral resistance throughout the night. This pattern was not eliminated by selective blockade, of alpha- or beta-sympathetic receptors or by double sympathetic blockade; in fact, it was exacerbated by sympathetic blockade, indicating that the sympathetic nervous system attenuates these events. Because these findings indicate that blood volume redistribution is probably not the mechanism mediating the observed effects, we have hypothesized that a diurnal loss in plasma volume may mediate the fall in cardiac output and that the rise in total peripheral resistance reflects a homeostatic regulation of arterial pressure.


1991 ◽  
Vol 260 (1) ◽  
pp. H254-H259
Author(s):  
R. Maass-Moreno ◽  
C. F. Rothe

We tested the hypothesis that the blood volumes of the spleen and liver of cats are reflexly controlled by the carotid sinus (CS) baroreceptors. In pentobarbital-anesthetized cats the CS area was isolated and perfused so that intracarotid pressure (Pcs) could be controlled while maintaining a normal brain blood perfusion. The volume changes of the liver and spleen were estimated by measuring their thickness using ultrasonic techniques. Cardiac output, systemic arterial blood pressure (Psa), central venous pressure, central blood volume, total peripheral resistance, and heart rate were also measured. In vagotomized cats, increasing Pcs by 100 mmHg caused a significant reduction in Psa (-67.8%), cardiac output (-26.6%), total peripheral resistance (-49.5%), and heart rate (-15%) and significantly increased spleen volume (9.7%, corresponding to a 2.1 +/- 0.5 mm increase in thickness). The liver volume decreased, but only by 1.6% (0.6 +/- 0.2 mm decrease in thickness), a change opposite that observed in the spleen. The changes in cardiovascular variables and in spleen volume suggest that the animals had functioning reflexes. These results indicate that in pentobarbital-anesthetized cats the carotid baroreceptors affect the volume of the spleen but not the liver and suggest that, although the spleen has an active role in the control of arterial blood pressure in the cat, the liver does not.


1960 ◽  
Vol 15 (6) ◽  
pp. 1065-1068 ◽  
Author(s):  
Edward J. Hershgold ◽  
Sheldon H. Steiner

Dogs were accelerated on the Wright-Patterson AFB human centrifuge in positive and transverse vectors. Cardiac output, blood pressure and heart rate were measured, and stroke volume and peripheral resistance calculated. In positive (headward) acceleration, the cardiac output and stroke volume were reduced; the peripheral resistance was increased. In the transverse vectors, the cardiac output was stable or increased; stroke volume was stable, and peripheral resistance was reduced. The results suggest that the circulatory disturbances associated with positive acceleration may limit tolerance to acceleration and that these may be avoided in transverse acceleration. Note: (With the Technical Assistance of Peter Grenell) Submitted on December 3, 1959


2019 ◽  
Vol 33 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Stefan Duschek ◽  
Alexandra Hoffmann ◽  
Casandra I. Montoro ◽  
Gustavo A. Reyes del Paso

Abstract. Chronic low blood pressure (hypotension) is accompanied by symptoms such as fatigue, reduced drive, faintness, dizziness, cold limbs, and concentration difficulties. The study explored the involvement of aberrances in autonomic cardiovascular control in the origin of this condition. In 40 hypotensive and 40 normotensive subjects, impedance cardiography, electrocardiography, and continuous blood pressure recordings were performed at rest and during stress induced by mental calculation. Parameters of cardiac sympathetic control (i.e., stroke volume, cardiac output, pre-ejection period, total peripheral resistance), parasympathetic control (i.e., heart rate variability), and baroreflex function (i.e., baroreflex sensitivity) were obtained. The hypotensive group exhibited markedly lower stroke volume, heart rate, and cardiac output, as well as higher pre-ejection period and baroreflex sensitivity than the control group. Hypotension was furthermore associated with a smaller blood pressure response during stress. No group differences arose in total peripheral resistance and heart rate variability. While reduced beta-adrenergic myocardial drive seems to constitute the principal feature of the autonomic impairment that characterizes chronic hypotension, baroreflex-related mechanisms may also contribute to this state. Insufficient organ perfusion due to reduced cardiac output and deficient cardiovascular adjustment to situational requirements may be involved in the manifestation of bodily and mental symptoms.


1979 ◽  
Vol 57 (s5) ◽  
pp. 119s-121s
Author(s):  
S. N. Hunyor ◽  
H. Larkin ◽  
Janet Rowe

1. The haemodynamic response to antagonistic (10 μg min−1 kg−1) and agonistic (40 μg min−1 kg−1) doses of saralasin was studied in young essential hypertensive patients. Blood pressure behaviour alone was thought to be inadequate to describe the response pattern. 2. Pre-saralasin setting of the renin-angiotensin axis was varied with salt intake (15 and 290 mmol of Na+/day) each for 10 days. This failed to influence blood pressure or plasma volume. 3. Antagonist blockade after low salt lowered blood pressure in three patients with the highest plasma renin values. Cardiac output rose in two of these, but it dropped in all others. 4. Decreases in cardiac output occurred with both doses of saralasin and even with suppression of the renin-angiotensin axis. This response is therefore unlikely to be due to removal of myocardial or venous angiotensin effects. 5. The renin-angiotensin system played a part in maintenance of blood pressure only with severe salt restriction and in a small proportion of cases. 6. No heart rate effect was seen with saralasin. 7. Blood pressure and total peripheral resistance responses were dependent on pre-(antagonist/ agonist) setting, but heart rate and cardiac output were not influenced by this factor.


1997 ◽  
Vol 273 (6) ◽  
pp. H2627-H2631 ◽  
Author(s):  
Acácio Salvador Véras-Silva ◽  
Katt Coelho Mattos ◽  
Nilo Sérgio Gava ◽  
Patricia Chakur Brum ◽  
Carlos Eduardo Negrão ◽  
...  

The decrease in cardiac sympathetic tone and heart rate after low-intensity exercise training may have hemodynamic consequences in spontaneously hypertensive rats (SHR). The effects of exercise training of low and high intensity on resting blood pressure, cardiac output, and total peripheral resistance were studied in sedentary ( n = 17), low- ( n = 17), and high-intensity exercise-trained ( n = 17) SHR. Exercise training was performed on a treadmill for 60 min, 5 times per week for 18 weeks, at 55% or 85% maximum oxygen uptake. Blood pressure was evaluated by a cannula inserted into the carotid artery, and cardiac output was evaluated by a microprobe placed around the ascending aorta. Low-intensity exercise-trained rats had a significantly lower mean blood pressure than sedentary and high-intensity exercise-trained rats (160 ± 4 vs. 175 ± 3 and 173 ± 2 mmHg, respectively). Cardiac index (20 ± 1 vs. 24 ± 1 and 24 ± 1 ml ⋅ min−1 ⋅ 100 g−1, respectively) and heart rate (332 ± 6 vs. 372 ± 14 and 345 ± 9 beats/min, respectively) were significantly lower in low-intensity exercise-trained rats than in sedentary and high-intensity exercise-trained rats. No significant difference was observed in stroke volume index and total peripheral resistance index in all groups studied. In conclusion, low-intensity, but not high-intensity, exercise training decreases heart rate and cardiac output and, consequently, attenuates hypertension in SHR.


1962 ◽  
Vol 202 (6) ◽  
pp. 1171-1174 ◽  
Author(s):  
Theodore Cooper ◽  
Teresa Pinakatt ◽  
Max Jellinek ◽  
Alfred W. Richardson

Hyperthermia of 40.5 C was induced in anesthetized white rats by microwave exposure (2,450-Mc continuous wave, .08 w/cm2). Thermal response was accompanied by increased cardiac output, stroke volume, cardiac work, and heart rate. Blood pressure and total peripheral resistance decreased. Administration of reserpine as a single dose of 2.5 mg/kg body wt. 1 day before the experiment depleted the myocardial norepinephrine, but did not eliminate the accelerated heart rate and increase of cardiac output during hyperthermia. Hyperthermia after reserpine did not alter significantly the stroke volume and blood pressure, and the peripheral resistance decreased. These data suggest that the circulatory adaptation to microwave hyperthermia is mediated not only through the sympathetic nervous system, but by other mechanisms such as direct cardiac response to the increased tissue temperature.


2011 ◽  
Vol 121 (9) ◽  
pp. 389-396 ◽  
Author(s):  
C. T. Paul Krediet ◽  
David L. Jardine ◽  
Wouter Wieling

We assessed the timing of vagal and sympathetic factors that mediate hypotension during CSM (carotid sinus massage) in patients with carotid sinus hypersensitivity. We hypothesized that a fall in cardiac output would precede vasodepression, and that vasodepression would be exaggerated by head-up tilt. We performed pulse contour analyses on blood pressure recordings during CSM in syncope patients during supine rest and head-up tilt. In a subset we simultaneously recorded muscle sympathetic nerve activity supine. During supine rest, systolic blood pressure decreased from 150±7 to 107±7 mmHg (P<0.001) and heart rate from 64±2 to 39±3 beats/min (P<0.01). Cardiac output decreased with heart rate to nadir (66±6% of baseline), 3.1±0.4 s after onset of bradycardia. In contrast, total peripheral resistance reached nadir (77±3% of baseline) after 11±1 s. During head-up-tilt, systolic blood pressure fell from 149±10 to 90±11 mmHg and heart rate decreased from 73±4 to 60±7 beats/min. Compared with supine rest, cardiac output nadir was lower (60±8 compared with 83±4%, P<0.05), whereas total peripheral resistance nadir was similar (81±6 compared with 80±3%). The time to nadir from the onset of bradycardia did not differ from supine rest. At the onset of bradycardia there was an immediate withdrawal of muscle-sympathetic nerve activity while total peripheral resistance decay occurred much later (6–8 s). The haemodynamic changes following CSM have a distinct temporal pattern that is characterized by an initial fall in cardiac output (driven by heart rate), followed by a later fall in total peripheral resistance, even though sympathetic withdrawal is immediate. This pattern is independent of body position.


Sign in / Sign up

Export Citation Format

Share Document