Abstract P160: Role of Uncoupling Protein 2 in Stroke Susceptibility of Stroke-prone Spontaneously Hypertensive Rat

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Speranza Rubattu ◽  
Maria Cotugno ◽  
Franca Bianchi ◽  
Sara Di Castro ◽  
Rosita Stanzione ◽  
...  

Mitochondrial dysfunction causes severe cellular derangements potentially underlying tissue injury and consequent diseases. Evidence of a direct involvement of mitochondrial dysfunction in hypertensive target organ damage is still poor. The gene encoding Uncoupling Protein 2 (UCP2), a inner mitochondrial membrane protein, maps inside stroke QTL/STR1 in stroke prone spontaneously hypertensive rat (SHRSP). We explored the role of UCP2 in stroke pathogenesis of SHRSP. Male SHRSP, stroke resistant SHR (SHRSR) and reciprocal STR1/congenic rats were fed with stroke permissive Japanese style diet (JD). A group of SHRSP received JD plus fenofibrate (150 mg/kg/die). Rats were sacrificed at stroke occurrence. Additional SHRSR and SHRSP rats were sacrificed at 1, 3, 6, 12 months of age upon regular diet. SBP, BW, proteinuria, stroke signs were monitored. Brains were used for molecular analysis (UCP2 gene and protein expression, Nf-kB protein expression, oxidative stress quantification) and for histological analyses. As a result, brain UCP2 expression was reduced to 20% by JD only in SHRSP (showing 100% stroke occurrence by 7 weeks of JD). Fenofibrate protected SHRSP from stroke and upregulated brain UCP2 (+ 100%). Congenic rats carrying STR1/QTL showed increased (+100%) brain UCP2 expression, as compared to SHRSP, when resistant to stroke, and, viceversa, decreased (-50%) brain UCP2 levels, as compared to SHRSR, when susceptible to stroke. Brain UCP2 expression progressively decreased with aging only in SHRSP, down to 15% level at one year of age (when SHRSP showed spontaneous stroke). Both brain Nf-kB expression and oxidative stress levels increased when UCP2 expression was downregulated, and viceversa. Histological analysis showed both ischemic and haemorrhagic lesions at stroke occurrence. Our results highlight a role of UCP2 in stroke predisposition associated to hypertension in an animal model of complex human disease.

2008 ◽  
Vol 30 (5) ◽  
pp. 315-325 ◽  
Author(s):  
Min Yu ◽  
Xingxiang Wang ◽  
Yuxi Du ◽  
Hongjuan Chen ◽  
Xiaogang Guo ◽  
...  

1980 ◽  
Vol 44 (5) ◽  
pp. 403-408 ◽  
Author(s):  
KENJI MIZUNO ◽  
SHUICHI SHIGETOMI ◽  
JUN-ICHIROH MATSUI ◽  
SOITSU FUKUSHI

2007 ◽  
Vol 293 (4) ◽  
pp. H2409-H2417 ◽  
Author(s):  
Ye Chen-Izu ◽  
Christopher W. Ward ◽  
Wayne Stark ◽  
Tamas Banyasz ◽  
Marius P. Sumandea ◽  
...  

As a critical step toward understanding the role of abnormal intracellular Ca2+ release via the ryanodine receptor (RyR2) during the development of hypertension-induced cardiac hypertrophy and heart failure, this study examines two questions: 1) At what stage, if ever, in the development of hypertrophy and heart failure is RyR2 hyperphosphorylated at Ser2808? 2) Does the spatial distribution of RyR2 clusters change in failing hearts? Using a newly developed semiquantitative immunohistochemistry method and Western blotting, we measured phosphorylation of RyR2 at Ser2808 in the spontaneously hypertensive rat (SHR) at four distinct disease stages. A major finding is that hyperphosphorylation of RyR2 at Ser2808 occurred only at late-stage heart failure in SHR, but not in age-matched controls. Furthermore, the spacing between RyR2 clusters was shortened in failing hearts, as predicted by quantitative model simulation to increase spontaneous Ca2+ wave generation and arrhythmias.


Sign in / Sign up

Export Citation Format

Share Document