Abstract P285: Hydralazine Attenuates the Development of Hypertension in the Female Dahl Salt-sensitive Rat in a T Cell-independent Manner

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Amrita V Pai ◽  
Crystal A West ◽  
Aline Souza ◽  
Parnika S Kadam ◽  
Emma J Pollner ◽  
...  

Introduction: Several studies in Dahl salt-sensitive ( DS ) rats suggest that T cells play a role in salt-sensitive hypertension. To further investigate the role of T cells, we compared T cell profiles in hypertensive DS and normotensive Dahl salt-resistant ( DR ) rats as well as in DS rats treated with hydralazine ( HYD ) to attenuate the development of hypertension. Methods: Mean arterial pressure ( MAP ) was measured by telemetry in DS rats (n=13) from 1 to 4.5 months ( mo ) of age. At 1.5 mo, all of the DR (n=8) and half of the DS rats were treated with vehicle (VEH, n=7). The other half of the DS rats (n=6) received HYD (25 mg/kg/day) in the drinking water. At 4.5 mo, renal T helper ( Th ) and cytotoxic ( Tc ) cells were assessed by multicolor flow cytometry. Results: In the DS kidney, the frequency of CD4 + Th cells [(%): DS-VEH, 76±1.2* vs. DR-VEH, 55±0.7; *p<0.0001; n=7-8/group] was higher while the frequency of CD8 + Tc cells [(%): DS-VEH, 14±1.2* vs. DR-VEH, 35±1; *p<0.0001; n=7-8/group] was lower compared to DR rats. 10 weeks of HYD treatment attenuated the age-associated increase in MAP observed in DS rats [p<0.0001, Two-Way ANOVA (time, treatment); MAP (mmHg): DS-VEH, 157±4 vs. DS-HYD, 133±3; *p<0.0004; n=6-7/group]. HYD had no effect on the frequency of CD4 + [(%):77±1.5] or CD8 + [(%):15.5±0.9] T cells in the kidney of DS rats [(CD4 + ): DS-VEH vs. DS-HYD, p=0.83; (CD8 + ): DS-VEH vs. DS-HYD, p=0.5; n=7-8/group]. In summary, the ratio of Th (CD4 + ) to Tc (CD8 + ) cells is higher in the kidney of DS compared to DR rats and HYD had no effect on the T cell profile in the DS rat kidney under conditions in which the MAP was attenuated by 20 mm Hg. Conclusions: These findings indicate the DS rat has more active Th cells in the kidney compared to the DR rat. Our study also suggests that vasodilators can attenuate the development of hypertension in the DS rat in a Th- and Tc-independent manner.

2019 ◽  
Vol 316 (6) ◽  
pp. H1345-H1353 ◽  
Author(s):  
Jiafa Ren ◽  
Steven D. Crowley

The contributions of T lymphocytes to the pathogenesis of salt-sensitive hypertension has been well established. Under hypertensive stimuli, naive T cells develop into different subsets, including Th1, Th2, Th17, Treg, and cytotoxic CD8+ T cells, depending on the surrounding microenviroment in organs. Distinct subsets of T cells may play totally different roles in tissue damage and hypertension. The underlying mechanisms by which hypertensive stimuli activate naive T cells involve many events and different organs, such as neoantigen presentation by dendritic cells, high salt concentration, and the milieu of oxidative stress in the kidney and vasculature. Infiltrating and activated T subsets in injured organs, in turn, exert considerable impacts on tissue dysfunction, including sodium retention in the kidney, vascular stiffness, and remodeling in the vasculature. Therefore, a thorough knowledge of T-cell actions in hypertension may provide novel insights into the development of new therapeutic strategies for patients with hypertension.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3119-3119
Author(s):  
Shannon P. Hilchey ◽  
Alexander F. Rosenberg ◽  
Ollivier Hyrien ◽  
Shelley Secor-Socha ◽  
Matthew R. Cochran ◽  
...  

Abstract Abstract 3119 Tumor infiltrating T-cells tend to be hypo-functional and this loss of function may be due to intrinsic T-cell defects, impaired antigen (Ag) presentation, and/or suppression induced by extrinsic components of the microenvironment, such as regulatory T-cells (Tregs). Each of these potential mechanisms has distinct implications on the potential efficacy of immunotherapy. To determine the functional potential of follicular lymphoma (FL) derived T-cells, we analyzed, by flow cytometry, T helper (Th) subsets and Staphylococcus enterotoxin B (SEB)-induced cytokine profiles of single cell suspensions from FL involved nodes (FL; n=8), reactive lymph nodes (RLN; n=7) and normal lymph nodes (NLN; n=6; obtained during vascular surgery). SEB was used as it directly triggers the T-cell receptor, abrogating the need for Ag presentation, and overcomes Treg mediated suppression. Herein we show that, relative to NLN, FL has decreased proportions of CD4+ T-cells having either a naïve (CD45RA+) or central memory (CD45RA−CCR7+) phenotype but increased proportions of effector memory T-cells (CD45RA−CCR7−). In addition, a higher percentage of pre-stimulation FL CD4+ T-cells show an activated (CD69+) phenotype as compared to that of RLN or NLN. Upon SEB stimulation, the FL CD4+ T-cells, like those from RLN and NLN, show an additional increase in the proportion of CD69+ cells, demonstrating that the FL derived CD4+ T-cells can be activated even further. We also show that upon stimulation with SEB; (a) the proportion of Th1 cells (IL-2+IFN-g+IL-4−) in FL is similar to that seen in RLN or NLN; (b) in contrast, we observe an increased frequency of primed uncommitted precursor Thpp cells (IL-2+IFN-g−IL-4−) in FL compared to that seen in either RLN or NLN; (c) an increased proportion of Th2 cells in FL compared with NLN and; (d) an increase in the proportion of Th17 cells in FL compared to that in RLN. Lastly, the proportions of FL Th cells producing 3 or 4 cytokines simultaneously, or poly-functional CD4+ T-cells, (PFT; PFT-3 producing IL-2, IFN-g and TNF-a or PFT-4 producing IL-2, IFN-g, TNF-a and MIP-1b), after SEB stimulation is similar to that seen in RLN or NLN. These data suggest that although there is skewed Th cell differentiation in FL, as compared to that of RLN or NLN, the intrinsic ability of the FL Th cells to elicit a clinically relevant effector response (both a Th1 and Th2 response) is fully preserved. In addition, the retention of effector function of FL Th cells is further supported by the fact that the proportions of these Th cells that have poly-functional cytokine profiles after SEB stimulation is similar in FL as compared to RLN or NLN. Indeed, poly-functionality of Th cells has been shown to correlate with the elicitation of protective immunity after vaccination for infectious diseases. Finally, the proportion of uncommitted Thpp cells after SEB stimulation is highest in FL. Thpp cells are non-polarized and can still differentiate into either Th1 or Th2 cells. They can also produce several chemokines and thus may play a role in shaping the FL microenvironment by recruiting other immune-effector cells as well as developing into Th1 and Th2 cells. Taken together, our data shows that FL Th cells are fully functional within the parameters of our assays, suggesting that these cells are intrinsically capable of mediating effective anti-tumor immune responses after immunotherapy. Therefore the hypo-functionality of FL T-cells is likely due to extrinsic factors which suppress T-cell function in vivo. Thus the challenge is to develop immunotherapeutic strategies that overcome these tumor associated extrinsic mechanisms, resulting in effective anti-tumor immunity. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (7) ◽  
pp. 1952-1960 ◽  
Author(s):  
Chang H. Kim ◽  
Hyung W. Lim ◽  
Jong R. Kim ◽  
Lusijah Rott ◽  
Peter Hillsamer ◽  
...  

Abstract Gene expression profiling was used to compare the gene expression patterns of human germinal center (GC) T helper (Th) cells with other CD4+ T-cell subsets (naive, central, and effector memory T cells). GC-Th cells, specifically localized in germinal centers to help B cells, are distantly related to central and effector memory T cells in global gene expression profiles. GC-Th cells displayed substantial differences in mRNA for adhesion molecules, chemoattractant receptors, and cytokines compared with other populations. Distinct expression of transcriptional factors by GC-Th cells is consistent with the hypothesis that they may be different from other T cells in cell lineage. Interestingly, CXCL13, a critical chemokine for B-cell entry to lymphoid follicles, is one of the most highly up-regulated genes in GC-Th cells. GC-Th cells (but not other T cells) produce and secrete large amounts of functional CXCL13 upon T-cell receptor activation, a process that is dependent on costimulation, requires translation and transcription, and is dramatically enhanced by activation in the presence of GC-B cells. This study revealed for the first time the unique gene expression program of GC-Th cells.


Blood ◽  
2011 ◽  
Vol 118 (13) ◽  
pp. 3591-3602 ◽  
Author(s):  
Shannon P. Hilchey ◽  
Alexander F. Rosenberg ◽  
Ollivier Hyrien ◽  
Shelley Secor-Socha ◽  
Matthew R. Cochran ◽  
...  

Abstract The follicular lymphoma (FL) T-cell microenvironment plays a critical role in the biology of this disease. We therefore determined the lineage, differentiation state, and functional potential of FL-infiltrating CD4+ T-helper cells (TH) compared with reactive and normal lymph node (NLN) TH cells. Relative to NLNs, FL cells have decreased proportions of naive and central memory but increased proportions of effector memory TH cells. We further show differences in the distribution and anatomical localization of CXCR5+ TH populations that, on the basis of transcription factor analysis, include both regulatory and follicular helper T cells. On Staphylococcus enterotoxin-B stimulation, which stimulates T cells through the T-cell receptor, requires no processing by APCs, and can overcome regulator T cell-mediated suppression, the proportion of uncommitted primed precursor cells, as well as TH2 and TH17 cells is higher in FL cells than in reactive lymph nodes or NLNs. However, the proportion of TH1 and polyfunctional TH cells (producing multiple cytokines simultaneously) is similar in FL cells and NLNs. These data suggest that, although TH-cell differentiation in FL is skewed compared with NLNs, FL TH cells should have the same intrinsic ability to elicit antitumor effector responses as NLN TH cells when tumor suppressive mechanisms are attenuated.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3424-3424
Author(s):  
Norihiro Ueda ◽  
Yasusi Uemura ◽  
Rhong Zhang ◽  
Shuichi Kitayama ◽  
Yutaka Yasui ◽  
...  

Abstract Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder caused by BCR-ABL fusion protein that has constitutively active tyrosine kinase activity. Although the prognosis of the patient with CML in chronic phase has markedly improved by the advent of tyrosine kinase inhibiters, the management of the patients with CML in advanced phase remains to be the major challenge. Immunotherapy is considered to be one of the promising treatment strategies for refractory CML. BCR-ABL fusion region, b3a2 peptide, represents a neo-epitope that can induce CML-specific immune responses. The activation of b3a2 peptide-specific CD4+ T helper (Th) cells and their interaction with dendritic cells (DCs) can induce a robust cytotoxic T lymphocyte (CTL)-mediated anti-leukemic immunity through epitope spreading. However, current vaccination strategies cannot effectively induce the proliferation of antigen-specific Th cells in vivo, presumably due to the tumor-induced immunosuppressive milieu. In addition, ex vivo expansion of antigen-specific Th cells attenuates their effector functions by expansion-related cell senescence, and the procedure to establish antigen-specific Th cells for each patient's treatment is too complicated for the clinical application. The purpose of the present study is to establish a method to generate large amounts of functional b3a2-specific CD4+ Th cells enough for the treatment of the patients with refractory CML by using induced pluripotent stem cell (iPSC) technology. First, we established b3a2-specific CD4+ Th clone from peripheral blood mononuclear cells of a healthy donor positive for HLA-DRB1*09:01 and HLA-A*24:02. The Th clone recognized b3a2 peptide in the context of HLA-DR9 and exhibited a Th1 profile. Second, we established iPSCs from the Th clone and differentiated them into T cell lineage by coculture with OP9 stromal cells expressing Notch ligand Delta-like 1. The iPSC-derived T cells (b3a2-iPS-T cells) expressed the same T cell antigen receptor (TCR) as the original Th clone but not CD4 molecule. Because CD4 acts as a co-receptor in the TCR-mediated Th responses, we transduced b3a2-iPS-T cells with CD4 gene. The CD4-expressing b3a2-iPS-T cells (CD4+ b3a2-iPS-T cells) recognized b3a2 peptide in the context of HLA-DR9 as the original Th clone. Moreover, CD4+ b3a2-iPS-T cells activated by b3a2 peptide induced DC maturation, as indicated by the upregulation of CD86 on DCs. In the additional presence of HLA-A24-restricted Wilms tumor 1 (WT1) peptide, the mature DCs stimulated primary expansion of WT1-specific CTLs. The CTLs exerted cytotoxicity against WT1 peptide-loaded HLA-A24 positive cell lines. These data suggest that the CD4+ b3a2-iPS-T cells have a potential to induce effective anti-leukemic immunity via DC maturation and subsequent CTL responses. The current approach enable to provide large amounts of b3a2 specific CD4+ Th-like cells that would augment CTL-mediated anti-leukemic responses via DC maturation, which may contribute to the treatment of patients with refractory CML. Disclosures Kiyoi: Yakult Honsha Co.,Ltd.: Research Funding; FUJIFILM Corporation: Patents & Royalties, Research Funding; Eisai Co., Ltd.: Research Funding; Kyowa Hakko Kirin Co., Ltd.: Consultancy, Research Funding; Sumitomo Dainippon Pharma Co., Ltd.: Research Funding; Zenyaku Kogyo Co., Ltd.: Research Funding; Novartis Pharma K.K.: Research Funding; Mochida Pharmaceutical Co., Ltd.: Research Funding; Astellas Pharma Inc.: Consultancy, Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding; FUJIFILM RI Pharma Co.,Ltd.: Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Research Funding; Alexion Pharmaceuticals: Research Funding; MSD K.K.: Research Funding; Japan Blood Products Organization: Research Funding; Takeda Pharmaceutical Co., Ltd.: Research Funding; Pfizer Inc.: Research Funding; Bristol-Myers Squibb: Research Funding; Chugai Pharmaceutical Co., Ltd.: Research Funding; Taisho Toyama Pharmaceutical Co., Ltd.: Research Funding; Teijin Ltd.: Research Funding. Naoe:Celgene K.K.: Research Funding; Otsuka Pharmaceutical Co., Ltd.: Research Funding; Toyama Chemical CO., LTD.: Research Funding; Kyowa Hakko Kirin Co., Ltd.: Patents & Royalties, Research Funding; Chugai Pharmaceutical Co., Ltd.: Patents & Royalties; FUJIFILM Corporation: Patents & Royalties, Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Research Funding; Pfizer Inc.: Research Funding; Astellas Pharma Inc.: Research Funding. Kaneko:AsTlym Co., Ltd: Other: founder, shareholder and scientific adviser.


1996 ◽  
Vol 70 (3) ◽  
pp. 211-214 ◽  
Author(s):  
J.D. Lee ◽  
J.J. Wang ◽  
J.H. Chang ◽  
L.Y. Chung ◽  
E.R. Chen ◽  
...  

AbstractWhen C57BL/6 mice were infected with Angiostrongylus cantonensis, the percentage of T helper (CD4+) cells and T supressor (CD8+) cells in peripheral blood increased weekly until the third and seventh week respectively, and then gradually decreased. C57BL/6 mice were depleted of CD4+ and CD8+ T cells by in vivo injection of anti-CD4 and anti-CD8 monoclonal antibodies, respectively, and then infected with A. cantonensis. There were significantly more and less worms recovered in the mice depleted of CD4+ and CD8+ T cells respectively than in undepleted mice. Discrete subpopulations of T cells from mice exposed to A. cantonensis for 3 weeks or 7 weeks were adoptively transferred to syngeneic recipients which were then given a challenge infection. Protection was mediated by a CD4+ T cell population present in mice after 3 weeks of infection but was not demonstrable with cells taken 7 weeks after infection. When CD4+ T cells obtained from 3-week infected mice were mixed with 5% CD8+ T cells obtained from mice infected for 7 weeks, no significant transfer of resistance was observed. Thus, immune responses to A. cantonensis in mice were regulated by discrete subpopulations of T lymphocytes.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1890-1890
Author(s):  
Pawel Muranski ◽  
Scott Stegemann ◽  
Greg Whitehill ◽  
A John Barrett

Abstract Introduction: Acute myeloid leukemia (AML) and other hematological malignancies that constitutively express MHC class II molecules represent the ideal target for leukemia-specific CD4+ T helper (Th) cells. CD4+ Th cells are central to the functioning of the immune system. They regulate adaptive immunity against infections and drive pathogenic responses in many autoimmune diseases. Our preclinical studies indicate that adoptively transferred antigen specific Th cells efficiently eradicate even advanced tumors in mice, showing functional advantage over their better characterized classical CD8+ cytotoxic counterparts. Unfortunately, the production of human class II-restricted Th cells is complex and challenging. Consequently, the clinical activity of tumor-specific Th cells has not been systematically evaluated and very little is known about their therapeutic potential in humans. Striking evidence of their enormous power comes from some anecdotal clinical reports of complete regression of metastatic cancers upon transfer of antigen-specific Th cells. Methods and Results: We investigated a reliable GMP-compatible method for in vitro expansion of antigen-specific CD4+ T cells targeting common leukemia associated antigens (LAAs) Willm's Tumor antigen 1 (WT1) and Preferentially Expressed Antigen in Melanoma (PRAME) for future adoptive immunotherapy in the setting of allogeneic stem cell transplantation (SCT). We hypothesized that the naïve CD4+ T cell compartment, rather than the bulk Th cell population could be a superior source for generating a tumor antigen specific cell product. To test this hypothesis bulk and naïve CD4+ T cells were isolated from the peripheral blood of normal donors by magnetic bead separation. Purified T cells were stimulated in vitro with autologous dendritic cells (DCs) pulsed with overlapping 15 amino-acid long peptide (pepmixes) spanning the length of both proteins. Two rounds of stimulation were performed in presence of IL-7, IL-15 and later +/- addition of IL-1, IL-6 and IL-23. IL-2 in low concentration was supplemented during the second round of stimulation. At the end of the second expansion the cells were tested for reactivity by intracellular cytokine production using flow cytometry (FACS) upon stimulation with cognate LAAs or irrelevant control pepmixes. In T cell cultures derived from naïve CD4+ T cells we observed robust induction of PRAME reactivity from majority of tested normal donors, while reactivity against WT1 was donor dependent. The frequency of LAAs in bulk CD4+ T cells was significantly lower in all cases, supporting the notion that pre-exiting memory Th cells have a competitive advantage over the LAA-specific precursor. T cell cultures supplemented with inflammatory cytokines demonstrated further enhancement of antigenic reactivity. Next we tested if LAA pepmix -stimulated T cells can recognize tumor targets. Naïve-derived PRAME and WT1 Th cells generated from normal SCT sibling donors produced IFN-γ, IL-2 and TNF-α upon exposure to fully HLA-matched AML blasts while no reactivity was seen in control CMV pp65-specific Th cells from the same donors. This observation suggests that LAA-specific CD4+ T cells induced with pepmixes have the ability to recognize physiologically-relevant tumor antigens. Conclusions: Here we report the feasibility of generating naïve-derived anti-leukemia CD4+ T cells from majority of normal donors. Removal of competing memory Th cells unmasks the LAA-specific reactivity, thus improving the reliability of the process. Importantly, these Th cells demonstrate highly-specific recognition of the tumor epitopes naturally processed by HLA-matched leukemic blasts, establishing the foundation for a future adoptive immunotherapy clinical trial in patients with hematological malignancy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2725-2732 ◽  
Author(s):  
Masih Ostad ◽  
Margareta Andersson ◽  
Astrid Gruber ◽  
Anne Sundblad

Activation and expansion of T helper (Th) cells followed by regulation of activation are essential to the generation of immune responses while limiting concomitant autoreactivity. In order to characterize T cells reactive towards myeloma-derived monoclonal immunoglobulin (mIg), an autologous coculture assay for single-cell analysis of mIg-responding cells was developed. When cultured with dendritic cells loaded with mIg, CD4+ Th cells from patients with progressing multiple myeloma (MM) showed a proliferative MHC class II–dependent response. CD8+ T-cell reactivity and Th1 activation were consistently low or absent, and Th2 and regulatory cytokines were expressed. The presence of such non-Th1 CD4+ T cells in peripheral blood was independent of treatment status, while the frequencies of responding cells varied between patients and reached the same order of magnitude as those measured for tetanus toxoid–specific Th memory cells. Furthermore, investigations of T-cell subpopulations indicated a possible regulatory role on the mIg responsiveness mediated by suppressive CD25highFOXP3+CD4+ T cells. It is proposed from the present results that a predominant in vivo activation of non-Th1 mIg-reactive CD4+ T cells constitute an Ig-dependent autoregulatory mechanism in human MM, with possible tumor growth supporting or permissive effects.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Louise C Evans ◽  
Galina Petrova ◽  
Theresa Kurth ◽  
David L Mattson ◽  
Allen W Cowley

Previous studies have shown that renal T-cell infiltration is a key component of salt-sensitive hypertension in Dahl salt-sensitive (SS) rats. Here we used chronic servo control experiments to determine the contribution of renal perfusion pressure (RPP) to T-cell infiltration in the SS rat kidney. An aortic balloon occluder was placed around the aorta, between the renal arteries, and used to maintain blood pressure to the left kidney at control levels, ~128 mmHg, during 7-days of salt induced hypertension. During the same period, the right kidney was exposed to increased RPP, averaging 158 ± 4 mmHg by high salt (4% NaCl) day-7. The number of infiltrating T-cells was compared between the two kidneys. Renal T-cell infiltration was significantly blunted in the left-servo controlled kidney compared to the right-uncontrolled kidney. The number of mature (CD3+), helper (CD3+CD4+) and cytotoxic T-cells (CD3+CD8+) were all significantly lower in the servo controlled kidney than in the hypertensive kidney (Fig.1). This effect was not specific to T-cells, monocyte, macrophage and B-cell infiltration were all significantly exacerbated in the hypertensive kidney. Increased RPP was also associated with augmented renal injury, with increased protein casts and glomeruli damage in the hypertensive kidney. We conclude that during the development of salt-sensitive hypertension increased RPP contributes to renal T-cell infiltration in SS rats; when blood pressure is maintained at control levels T-cell infiltration is significantly attenuated in the servo-controlled kidney relative to the hypertensive kidney despite exposure to comparable sympathetic drive and circulating factors.


Sign in / Sign up

Export Citation Format

Share Document